Answer :
To find the specific heat capacity, we can use the formula:
[tex]\[ c = \frac{\Delta E}{m \times \Delta T} \][/tex]
where:
- [tex]\( c \)[/tex] is the specific heat capacity,
- [tex]\(\Delta E\)[/tex] is the change in internal energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\(\Delta T\)[/tex] is the temperature change.
Let's plug in the values given in the problem:
- [tex]\(\Delta E = 84 \, \text{Joules}\)[/tex],
- [tex]\( m = 28 \, \text{kg}\)[/tex],
- [tex]\(\Delta T = 37 \, ^{\circ}\text{C}\)[/tex].
Now substitute the values into the formula:
[tex]\[ c = \frac{84}{28 \times 37} \][/tex]
Calculate the denominator:
[tex]\[ 28 \times 37 = 1036 \][/tex]
Now divide the change in internal energy by the product of mass and temperature change:
[tex]\[ c = \frac{84}{1036} \approx 0.08108108108108109 \][/tex]
Next, round the result to two decimal places:
[tex]\[ c \approx 0.08 \][/tex]
Therefore, the specific heat capacity is approximately [tex]\( 0.08 \, \text{J/kg} \cdot ^{\circ}\text{C} \)[/tex].
[tex]\[ c = \frac{\Delta E}{m \times \Delta T} \][/tex]
where:
- [tex]\( c \)[/tex] is the specific heat capacity,
- [tex]\(\Delta E\)[/tex] is the change in internal energy,
- [tex]\( m \)[/tex] is the mass,
- [tex]\(\Delta T\)[/tex] is the temperature change.
Let's plug in the values given in the problem:
- [tex]\(\Delta E = 84 \, \text{Joules}\)[/tex],
- [tex]\( m = 28 \, \text{kg}\)[/tex],
- [tex]\(\Delta T = 37 \, ^{\circ}\text{C}\)[/tex].
Now substitute the values into the formula:
[tex]\[ c = \frac{84}{28 \times 37} \][/tex]
Calculate the denominator:
[tex]\[ 28 \times 37 = 1036 \][/tex]
Now divide the change in internal energy by the product of mass and temperature change:
[tex]\[ c = \frac{84}{1036} \approx 0.08108108108108109 \][/tex]
Next, round the result to two decimal places:
[tex]\[ c \approx 0.08 \][/tex]
Therefore, the specific heat capacity is approximately [tex]\( 0.08 \, \text{J/kg} \cdot ^{\circ}\text{C} \)[/tex].