Answer :
To solve the problem, we need to find [tex]\( F(5) + G(6) \)[/tex] using the functions provided:
1. Calculate [tex]\( F(5) \)[/tex]:
The function [tex]\( F(x) \)[/tex] is given by:
[tex]\[
F(x) = x^2 + 4x
\][/tex]
Substitute [tex]\( x = 5 \)[/tex] into the function:
[tex]\[
F(5) = 5^2 + 4 \times 5
\][/tex]
[tex]\[
F(5) = 25 + 20 = 45
\][/tex]
2. Calculate [tex]\( G(6) \)[/tex]:
The function [tex]\( G(x) \)[/tex] is given by:
[tex]\[
G(x) = 2x + 2
\][/tex]
Substitute [tex]\( x = 6 \)[/tex] into the function:
[tex]\[
G(6) = 2 \times 6 + 2
\][/tex]
[tex]\[
G(6) = 12 + 2 = 14
\][/tex]
3. Find [tex]\( F(5) + G(6) \)[/tex]:
Add the results from the above calculations:
[tex]\[
F(5) + G(6) = 45 + 14 = 59
\][/tex]
Thus, the answer is [tex]\( 59 \)[/tex].
1. Calculate [tex]\( F(5) \)[/tex]:
The function [tex]\( F(x) \)[/tex] is given by:
[tex]\[
F(x) = x^2 + 4x
\][/tex]
Substitute [tex]\( x = 5 \)[/tex] into the function:
[tex]\[
F(5) = 5^2 + 4 \times 5
\][/tex]
[tex]\[
F(5) = 25 + 20 = 45
\][/tex]
2. Calculate [tex]\( G(6) \)[/tex]:
The function [tex]\( G(x) \)[/tex] is given by:
[tex]\[
G(x) = 2x + 2
\][/tex]
Substitute [tex]\( x = 6 \)[/tex] into the function:
[tex]\[
G(6) = 2 \times 6 + 2
\][/tex]
[tex]\[
G(6) = 12 + 2 = 14
\][/tex]
3. Find [tex]\( F(5) + G(6) \)[/tex]:
Add the results from the above calculations:
[tex]\[
F(5) + G(6) = 45 + 14 = 59
\][/tex]
Thus, the answer is [tex]\( 59 \)[/tex].