College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]$F(x)=x^2+4x$[/tex] and [tex]$G(x)=2x+2$[/tex], find [tex]$F(5)+G(6)$[/tex].

A. 44
B. 98
C. 59

Answer :

To solve the problem, we need to find [tex]\( F(5) + G(6) \)[/tex] using the functions provided:

1. Calculate [tex]\( F(5) \)[/tex]:

The function [tex]\( F(x) \)[/tex] is given by:
[tex]\[
F(x) = x^2 + 4x
\][/tex]

Substitute [tex]\( x = 5 \)[/tex] into the function:
[tex]\[
F(5) = 5^2 + 4 \times 5
\][/tex]
[tex]\[
F(5) = 25 + 20 = 45
\][/tex]

2. Calculate [tex]\( G(6) \)[/tex]:

The function [tex]\( G(x) \)[/tex] is given by:
[tex]\[
G(x) = 2x + 2
\][/tex]

Substitute [tex]\( x = 6 \)[/tex] into the function:
[tex]\[
G(6) = 2 \times 6 + 2
\][/tex]
[tex]\[
G(6) = 12 + 2 = 14
\][/tex]

3. Find [tex]\( F(5) + G(6) \)[/tex]:

Add the results from the above calculations:
[tex]\[
F(5) + G(6) = 45 + 14 = 59
\][/tex]

Thus, the answer is [tex]\( 59 \)[/tex].