College

If [tex]$F(x)=x^2+4x$[/tex] and [tex]$G(x)=2x+2$[/tex], find [tex]$F(5) + G(6)$[/tex].

A. 44
B. 98
C. 59

Answer :

To solve the problem, you need to find the values of [tex]\( F(5) \)[/tex] and [tex]\( G(6) \)[/tex] using the given functions and then add these values together.

First, let's identify the functions provided:
- [tex]\( F(x) = x^2 + 4x \)[/tex]
- [tex]\( G(x) = 2x + 2 \)[/tex]

### Step-by-Step Solution:

1. Calculate [tex]\( F(5) \)[/tex]:

Using the function [tex]\( F(x) = x^2 + 4x \)[/tex]:
[tex]\[
F(5) = 5^2 + 4 \cdot 5 = 25 + 20 = 45
\][/tex]

2. Calculate [tex]\( G(6) \)[/tex]:

Using the function [tex]\( G(x) = 2x + 2 \)[/tex]:
[tex]\[
G(6) = 2 \cdot 6 + 2 = 12 + 2 = 14
\][/tex]

3. Add [tex]\( F(5) \)[/tex] and [tex]\( G(6) \)[/tex]:

[tex]\[
F(5) + G(6) = 45 + 14 = 59
\][/tex]

### Conclusion:
The value of [tex]\( F(5) + G(6) \)[/tex] is [tex]\( 59 \)[/tex].

Thus, the correct answer is:
59