College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex] f(x) [/tex] is an exponential function of the form [tex] y = ab^x [/tex], where [tex] f(-3.5) = 10 [/tex] and [tex] f(0.5) = 89 [/tex], find the value of [tex] f(0) [/tex] to the nearest hundredth.

Answer :

To find the value of [tex]\( f(0) \)[/tex] for an exponential function [tex]\( f(x) = a \cdot b^x \)[/tex] given the points [tex]\( f(-3.5) = 10 \)[/tex] and [tex]\( f(0.5) = 89 \)[/tex], follow these steps:

1. Set up the equations using the points provided:

- For [tex]\( f(-3.5) = 10 \)[/tex]:
[tex]\[
10 = a \cdot b^{-3.5}
\][/tex]
- For [tex]\( f(0.5) = 89 \)[/tex]:
[tex]\[
89 = a \cdot b^{0.5}
\][/tex]

2. Solve for [tex]\( b \)[/tex] by dividing the two equations:

Divide the equation for [tex]\( f(0.5) \)[/tex] by the equation for [tex]\( f(-3.5) \)[/tex]:
[tex]\[
\frac{89}{10} = \frac{a \cdot b^{0.5}}{a \cdot b^{-3.5}}
\][/tex]
Simplify the expression:
[tex]\[
\frac{89}{10} = b^{0.5 + 3.5} = b^4
\][/tex]

3. Calculate [tex]\( b \)[/tex]:

Find [tex]\( b \)[/tex] by taking the fourth root of both sides:
[tex]\[
b = \left(\frac{89}{10}\right)^{\frac{1}{4}} \approx 1.727
\][/tex]

4. Solve for [tex]\( a \)[/tex]:

Substitute [tex]\( b \)[/tex] back into one of the original equations to find [tex]\( a \)[/tex]. Let's use [tex]\( f(-3.5) = 10 \)[/tex]:
[tex]\[
10 = a \cdot b^{-3.5}
\][/tex]
Solve for [tex]\( a \)[/tex]:
[tex]\[
a = 10 \cdot b^{3.5}
\][/tex]
Substitute the value of [tex]\( b \)[/tex]:
[tex]\[
a \approx 10 \cdot (1.727)^{3.5} \approx 67.72
\][/tex]

5. Find [tex]\( f(0) \)[/tex]:

Since [tex]\( f(x) = a \cdot b^x \)[/tex], then:
[tex]\[
f(0) = a \cdot b^0 = a
\][/tex]
Therefore, the value of [tex]\( f(0) \)[/tex] is:
[tex]\[
f(0) \approx 67.72
\][/tex]

Thus, the value of [tex]\( f(0) \)[/tex], rounded to the nearest hundredth, is approximately [tex]\( 67.72 \)[/tex].