High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]$f(x)$[/tex] is an exponential function of the form [tex]$y = ab^x$[/tex] where [tex]$f(3) = 4$[/tex] and [tex]$f(8.5) = 76$[/tex], then find the value of [tex]$f(5.5)$[/tex] to the nearest hundredth.

Answer :

To solve this problem, we need to determine the exponential function [tex]\( f(x) = a \cdot b^x \)[/tex] using the given points: [tex]\( f(3) = 4 \)[/tex] and [tex]\( f(8.5) = 76 \)[/tex]. After finding the parameters [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we can calculate [tex]\( f(5.5) \)[/tex].

### Step 1: Set Up Equations

1. From the first point, we have:
[tex]\[
a \cdot b^3 = 4
\][/tex]

2. From the second point, we have:
[tex]\[
a \cdot b^{8.5} = 76
\][/tex]

### Step 2: Solve for [tex]\( a \)[/tex] and [tex]\( b \)[/tex]

To eliminate [tex]\( a \)[/tex], divide the second equation by the first equation:
[tex]\[
\frac{a \cdot b^{8.5}}{a \cdot b^3} = \frac{76}{4}
\][/tex]
This simplifies to:
[tex]\[
b^{8.5 - 3} = 19
\][/tex]
[tex]\[
b^{5.5} = 19
\][/tex]
Now, solve for [tex]\( b \)[/tex] by taking the fifth root:
[tex]\[
b = 19^{1/5.5}
\][/tex]

### Step 3: Calculate [tex]\( b \)[/tex]

Using a calculator, approximate:
[tex]\[
b \approx 1.943
\][/tex]

### Step 4: Solve for [tex]\( a \)[/tex]

Substitute [tex]\( b \)[/tex] back into the first equation to find [tex]\( a \)[/tex]:
[tex]\[
a \cdot (1.943)^3 = 4
\][/tex]
Calculate [tex]\( (1.943)^3 \)[/tex]:
[tex]\[
(1.943)^3 \approx 7.324
\][/tex]
[tex]\[
a \cdot 7.324 = 4
\][/tex]
[tex]\[
a = \frac{4}{7.324} \approx 0.546
\][/tex]

### Step 5: Find [tex]\( f(5.5) \)[/tex]

Now that you have [tex]\( a \)[/tex] and [tex]\( b \)[/tex], calculate [tex]\( f(5.5) \)[/tex]:
[tex]\[
f(5.5) = a \cdot b^{5.5}
\][/tex]
[tex]\[
f(5.5) = 0.546 \cdot (1.943)^{5.5}
\][/tex]

Substitute and calculate:
[tex]\[
(1.943)^{5.5} \approx 19
\][/tex]
[tex]\[
f(5.5) = 0.546 \cdot 19 \approx 10.374
\][/tex]

### Conclusion

The value of [tex]\( f(5.5) \)[/tex] is approximately [tex]\( \boxed{10.37} \)[/tex].