Answer :
We start with the function
[tex]$$
f(x) = \frac{1}{9} \cdot 9^x.
$$[/tex]
To find [tex]$f(3)$[/tex], substitute [tex]$x = 3$[/tex]:
[tex]$$
f(3) = \frac{1}{9} \cdot 9^3.
$$[/tex]
Next, calculate [tex]$9^3$[/tex]. We have:
[tex]$$
9^3 = 9 \times 9 \times 9 = 729.
$$[/tex]
Now substitute back:
[tex]$$
f(3) = \frac{1}{9} \cdot 729 = \frac{729}{9} = 81.
$$[/tex]
Thus, the value of [tex]$f(3)$[/tex] is [tex]$\boxed{81}$[/tex].
[tex]$$
f(x) = \frac{1}{9} \cdot 9^x.
$$[/tex]
To find [tex]$f(3)$[/tex], substitute [tex]$x = 3$[/tex]:
[tex]$$
f(3) = \frac{1}{9} \cdot 9^3.
$$[/tex]
Next, calculate [tex]$9^3$[/tex]. We have:
[tex]$$
9^3 = 9 \times 9 \times 9 = 729.
$$[/tex]
Now substitute back:
[tex]$$
f(3) = \frac{1}{9} \cdot 729 = \frac{729}{9} = 81.
$$[/tex]
Thus, the value of [tex]$f(3)$[/tex] is [tex]$\boxed{81}$[/tex].