Answer :
We start with the function
[tex]$$
f(x) = \frac{1}{9} \cdot 9^x.
$$[/tex]
Step 1: Substitute [tex]$x = 3$[/tex] into the function:
[tex]$$
f(3) = \frac{1}{9} \cdot 9^3.
$$[/tex]
Step 2: Calculate [tex]$9^3$[/tex]. We have
[tex]$$
9^3 = 9 \times 9 \times 9 = 729.
$$[/tex]
Step 3: Now, substitute [tex]$729$[/tex] back into the equation:
[tex]$$
f(3) = \frac{1}{9} \cdot 729 = \frac{729}{9}.
$$[/tex]
Step 4: Divide [tex]$729$[/tex] by [tex]$9$[/tex]:
[tex]$$
\frac{729}{9} = 81.
$$[/tex]
Thus, the final result is
[tex]$$
f(3) = 81.
$$[/tex]
The correct answer is [tex]$\boxed{81}$[/tex].
[tex]$$
f(x) = \frac{1}{9} \cdot 9^x.
$$[/tex]
Step 1: Substitute [tex]$x = 3$[/tex] into the function:
[tex]$$
f(3) = \frac{1}{9} \cdot 9^3.
$$[/tex]
Step 2: Calculate [tex]$9^3$[/tex]. We have
[tex]$$
9^3 = 9 \times 9 \times 9 = 729.
$$[/tex]
Step 3: Now, substitute [tex]$729$[/tex] back into the equation:
[tex]$$
f(3) = \frac{1}{9} \cdot 729 = \frac{729}{9}.
$$[/tex]
Step 4: Divide [tex]$729$[/tex] by [tex]$9$[/tex]:
[tex]$$
\frac{729}{9} = 81.
$$[/tex]
Thus, the final result is
[tex]$$
f(3) = 81.
$$[/tex]
The correct answer is [tex]$\boxed{81}$[/tex].