College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]$f(x)=\left(\frac{1}{9}\right)\left(9^x\right)$[/tex], what is [tex]$f(3)$[/tex]?

A. [tex]$\frac{1}{81}$[/tex]
B. 729
C. [tex][tex]$\frac{1}{729}$[/tex][/tex]
D. 81

Answer :

To find [tex]\( f(3) \)[/tex] given the function [tex]\( f(x) = \left(\frac{1}{9}\right)\left(9^x\right) \)[/tex], we can follow these steps:

1. Substitute 3 into the function:
Start by substituting [tex]\( x = 3 \)[/tex] into the function. So, it becomes:
[tex]\[
f(3) = \left(\frac{1}{9}\right)\left(9^3\right)
\][/tex]

2. Calculate [tex]\( 9^3 \)[/tex]:
Compute [tex]\( 9^3 \)[/tex]:
[tex]\[
9^3 = 9 \times 9 \times 9 = 81 \times 9 = 729
\][/tex]

3. Multiply by [tex]\(\frac{1}{9}\)[/tex]:
Now, multiply the result by [tex]\(\frac{1}{9}\)[/tex]:
[tex]\[
\left(\frac{1}{9}\right) \times 729 = \frac{729}{9}
\][/tex]

4. Simplify the fraction:
Divide 729 by 9 to simplify the expression:
[tex]\[
\frac{729}{9} = 81
\][/tex]

Therefore, [tex]\( f(3) = 81 \)[/tex].

The correct answer is D. 81.