Answer :
We are given the function
[tex]$$
f(x) = \frac{1}{2} x^2 - 3.
$$[/tex]
To find [tex]\( f(6) \)[/tex], we substitute [tex]\( x = 6 \)[/tex] into the function:
1. Compute the square of 6:
[tex]$$
6^2 = 36.
$$[/tex]
2. Multiply the result by [tex]\( \frac{1}{2} \)[/tex]:
[tex]$$
\frac{1}{2} \times 36 = 18.
$$[/tex]
3. Subtract 3:
[tex]$$
18 - 3 = 15.
$$[/tex]
Thus, the value of [tex]\( f(6) \)[/tex] is [tex]\( \boxed{15} \)[/tex].
[tex]$$
f(x) = \frac{1}{2} x^2 - 3.
$$[/tex]
To find [tex]\( f(6) \)[/tex], we substitute [tex]\( x = 6 \)[/tex] into the function:
1. Compute the square of 6:
[tex]$$
6^2 = 36.
$$[/tex]
2. Multiply the result by [tex]\( \frac{1}{2} \)[/tex]:
[tex]$$
\frac{1}{2} \times 36 = 18.
$$[/tex]
3. Subtract 3:
[tex]$$
18 - 3 = 15.
$$[/tex]
Thus, the value of [tex]\( f(6) \)[/tex] is [tex]\( \boxed{15} \)[/tex].