Answer :
To find [tex]\( f(2) \)[/tex] when [tex]\( f(x) = 3^{(x+4)} \)[/tex], we need to substitute [tex]\( x = 2 \)[/tex] into the function and calculate the result.
1. Substitute 2 for [tex]\( x \)[/tex] in the function:
[tex]\[
f(2) = 3^{(2+4)}
\][/tex]
2. Simplify the expression inside the exponent:
[tex]\[
2 + 4 = 6
\][/tex]
3. The function simplifies to:
[tex]\[
f(2) = 3^6
\][/tex]
4. Calculate [tex]\( 3^6 \)[/tex]:
[tex]\[
3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729
\][/tex]
Thus, [tex]\( f(2) = 729 \)[/tex]. The correct answer is 729.
1. Substitute 2 for [tex]\( x \)[/tex] in the function:
[tex]\[
f(2) = 3^{(2+4)}
\][/tex]
2. Simplify the expression inside the exponent:
[tex]\[
2 + 4 = 6
\][/tex]
3. The function simplifies to:
[tex]\[
f(2) = 3^6
\][/tex]
4. Calculate [tex]\( 3^6 \)[/tex]:
[tex]\[
3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729
\][/tex]
Thus, [tex]\( f(2) = 729 \)[/tex]. The correct answer is 729.