High School

If [tex]f(x) = 3^{x+1}[/tex], find the value of [tex]f(1) \times f(0)[/tex].

Select one:

A. 9
B. 0
C. 81
D. 27

Answer :

We are given the function

[tex]$$
f(x) = 3^{x+1}.
$$[/tex]

Step 1. Compute [tex]\( f(1) \)[/tex]:

Substitute [tex]\( x = 1 \)[/tex] into the function:

[tex]$$
f(1) = 3^{1+1} = 3^2 = 9.
$$[/tex]

Step 2. Compute [tex]\( f(0) \)[/tex]:

Substitute [tex]\( x = 0 \)[/tex] into the function:

[tex]$$
f(0) = 3^{0+1} = 3^1 = 3.
$$[/tex]

Step 3. Calculate the Product:

Multiply [tex]\( f(1) \)[/tex] and [tex]\( f(0) \)[/tex]:

[tex]$$
f(1) \times f(0) = 9 \times 3 = 27.
$$[/tex]

Thus, the value of [tex]\( f(1) \times f(0) \)[/tex] is [tex]\( \boxed{27} \)[/tex].