Answer :
We are given the function
[tex]$$
f(x) = 3^{x+1}.
$$[/tex]
Step 1. Compute [tex]\( f(1) \)[/tex]:
Substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]$$
f(1) = 3^{1+1} = 3^2 = 9.
$$[/tex]
Step 2. Compute [tex]\( f(0) \)[/tex]:
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]$$
f(0) = 3^{0+1} = 3^1 = 3.
$$[/tex]
Step 3. Calculate the Product:
Multiply [tex]\( f(1) \)[/tex] and [tex]\( f(0) \)[/tex]:
[tex]$$
f(1) \times f(0) = 9 \times 3 = 27.
$$[/tex]
Thus, the value of [tex]\( f(1) \times f(0) \)[/tex] is [tex]\( \boxed{27} \)[/tex].
[tex]$$
f(x) = 3^{x+1}.
$$[/tex]
Step 1. Compute [tex]\( f(1) \)[/tex]:
Substitute [tex]\( x = 1 \)[/tex] into the function:
[tex]$$
f(1) = 3^{1+1} = 3^2 = 9.
$$[/tex]
Step 2. Compute [tex]\( f(0) \)[/tex]:
Substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]$$
f(0) = 3^{0+1} = 3^1 = 3.
$$[/tex]
Step 3. Calculate the Product:
Multiply [tex]\( f(1) \)[/tex] and [tex]\( f(0) \)[/tex]:
[tex]$$
f(1) \times f(0) = 9 \times 3 = 27.
$$[/tex]
Thus, the value of [tex]\( f(1) \times f(0) \)[/tex] is [tex]\( \boxed{27} \)[/tex].