College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]$f(x) = 2x + 3$[/tex] and [tex]$g(x) = x^2 + 1$[/tex], find [tex][tex]$f(g(3))$[/tex][/tex].

A. 23
B. 47
C. 82
D. 90

Answer :

Let's solve the problem step-by-step.

Given:
- [tex]\( f(x) = 2x + 3 \)[/tex]
- [tex]\( g(x) = x^2 + 1 \)[/tex]

We need to find [tex]\( f(g(3)) \)[/tex].

1. First, calculate [tex]\( g(3) \)[/tex].
[tex]\[
g(x) = x^2 + 1
\][/tex]
So,
[tex]\[
g(3) = 3^2 + 1 = 9 + 1 = 10
\][/tex]

2. Then, use the result from [tex]\( g(3) \)[/tex] to find [tex]\( f(g(3)) \)[/tex].
[tex]\[
f(x) = 2x + 3
\][/tex]
Here, we have [tex]\( x = g(3) = 10 \)[/tex].

So,
[tex]\[
f(10) = 2(10) + 3 = 20 + 3 = 23
\][/tex]

Therefore, the value of [tex]\( f(g(3)) \)[/tex] is [tex]\( 23 \)[/tex].

The correct answer is [tex]\(\boxed{23}\)[/tex].