College

If [tex]f(5)=288.9[/tex] when [tex]r=0.05[/tex] for the function [tex]f(t)=P e^t[/tex], then what is the approximate value of [tex]P[/tex]?

A. 24
B. 3520
C. 225
D. 371

Answer :

We are given that
[tex]$$
f(t) = P e^{rt}
$$[/tex]
and that
[tex]$$
f(5) = 288.9
$$[/tex]
with
[tex]$$
r = 0.05.
$$[/tex]

Step 1. Substitute the given values into the function:
[tex]$$
f(5) = P e^{0.05 \times 5}.
$$[/tex]

Step 2. Calculate the exponent:
[tex]$$
0.05 \times 5 = 0.25.
$$[/tex]
So the equation becomes:
[tex]$$
288.9 = P e^{0.25}.
$$[/tex]

Step 3. Solve for [tex]$P$[/tex] by dividing both sides by [tex]$e^{0.25}$[/tex]:
[tex]$$
P = \frac{288.9}{e^{0.25}}.
$$[/tex]

Step 4. Calculate the value of [tex]$e^{0.25}$[/tex]:
[tex]$$
e^{0.25} \approx 1.2840.
$$[/tex]

Step 5. Substitute this value into the equation for [tex]$P$[/tex]:
[tex]$$
P \approx \frac{288.9}{1.2840} \approx 225.
$$[/tex]

Thus, the approximate value of [tex]$P$[/tex] is [tex]$\boxed{225}$[/tex].