College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]f(4) = 246.4[/tex] when [tex]r = 0.04[/tex] for the function [tex]f(t) = P e^t[/tex], then what is the approximate value of [tex]P[/tex]?

A. 210
B. 289
C. 50
D. 1220

Answer :

Let's solve the problem step-by-step to find the approximate value of [tex]\( P \)[/tex].

We have the function [tex]\( f(t) = P \cdot e^{r \cdot t} \)[/tex]. We're given that [tex]\( f(4) = 246.4 \)[/tex]. We also know [tex]\( r = 0.04 \)[/tex] and [tex]\( t = 4 \)[/tex].

Our goal is to find the approximate value of [tex]\( P \)[/tex].

### Step 1: Write the Equation for [tex]\( f(4) \)[/tex]

Given:

[tex]\[
f(4) = P \cdot e^{0.04 \cdot 4}
\][/tex]

### Step 2: Substitute the Known Value

We know [tex]\( f(4) = 246.4 \)[/tex], so:

[tex]\[
246.4 = P \cdot e^{0.04 \cdot 4}
\][/tex]

### Step 3: Simplify the Exponent

Calculate the exponent:

[tex]\( 0.04 \cdot 4 = 0.16 \)[/tex]

So, the equation becomes:

[tex]\[
246.4 = P \cdot e^{0.16}
\][/tex]

### Step 4: Solve for [tex]\( P \)[/tex]

To find [tex]\( P \)[/tex], rearrange the equation:

[tex]\[
P = \frac{246.4}{e^{0.16}}
\][/tex]

### Step 5: Calculate [tex]\( e^{0.16} \)[/tex]

Using a calculator:

[tex]\[
e^{0.16} \approx 1.1735
\][/tex]

### Step 6: Calculate [tex]\( P \)[/tex]

Divide 246.4 by 1.1735:

[tex]\[
P \approx \frac{246.4}{1.1735} \approx 209.97
\][/tex]

### Step 7: Choose the Closest Option

The closest value among the options is [tex]\( P \approx 210 \)[/tex].

So, the approximate value of [tex]\( P \)[/tex] is:

A. 210