College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]f(4) = 246.4[/tex] when [tex]r = 0.04[/tex] for the function [tex]f(t) = P e^t[/tex], then what is the approximate value of [tex]P[/tex]?

A. 289
B. 210
C. 1220
D. 50

Answer :

To solve this problem, we need to find the approximate value of [tex]\( P \)[/tex] in the function [tex]\( f(t) = P e^t \)[/tex], given that [tex]\( f(4) = 246.4 \)[/tex] and [tex]\( r = 0.04 \)[/tex].

1. First, note that the variable [tex]\( t \)[/tex] in the function is affected by the rate [tex]\( r \)[/tex]. Here, we are given that [tex]\( t = 4 \times 0.04 \)[/tex].

2. Calculate [tex]\( t \)[/tex] by multiplying:
[tex]\[
t = 4 \times 0.04 = 0.16
\][/tex]

3. Substitute [tex]\( t \)[/tex] into the function:
[tex]\[
f(t) = P e^t = P e^{0.16}
\][/tex]

4. We are given that [tex]\( f(4) = 246.4 \)[/tex]. So, substitute this value into the equation:
[tex]\[
246.4 = P e^{0.16}
\][/tex]

5. To find [tex]\( P \)[/tex], we need to solve the equation for [tex]\( P \)[/tex]:
[tex]\[
P = \frac{246.4}{e^{0.16}}
\][/tex]

6. Calculate [tex]\( e^{0.16} \)[/tex] using the approximate value for [tex]\( e\)[/tex], and then divide 246.4 by this result to find [tex]\( P \)[/tex].

When calculated, this gives an approximate value of:
[tex]\[
P \approx 209.97
\][/tex]

Therefore, the closest answer choice to this value is [tex]\( \text{B. } 210 \)[/tex].