Answer :
[tex]$W(\mathbf{x})$[/tex]is a linear transformation. it is not onto .The given statement is false.
The objective is to determine whether the following statement is true or false.
"If [tex]$$T_1(\mathbf{x})$ and $T_2(\mathbf{x})$[/tex] are onto linear transformations from [tex]$\mathbf{R}^n$[/tex] to [tex]$\mathbf{R}^m$[/tex] then [tex]$W(\mathbf{x})=T_1(\mathbf{x})+T_2(\mathbf{x})$[/tex] is an onto linear transformation."
To check whether [tex]$W(\mathbf{x})$[/tex] is a linear transformation or not:
For a, b ∈ R and for x, y ∈ [tex]$\mathbf{R}^n$[/tex],
[tex]$$\begin{aligned}W(a \mathbf{x}+b \mathbf{y})= & T_1(a \mathbf{x}+b \mathbf{y})+T_2(a \mathbf{x}+b \mathbf{y}) \quad\left(\text { Since } W(\mathbf{x})=T_1(\mathbf{x})+T_2(\mathbf{x})\right) \\= & {\left[a T_1(\mathbf{x})+b T_1(\mathbf{y})\right]+\left[a T_2(\mathbf{x})+b T_2(\mathbf{y})\right] } \\& \quad\left(\text { Since } T_1(\mathbf{x}) \text { and } T_2(\mathbf{x}) \text { are onto linear transformations }\right) \\\end[/tex]
[tex]= & a\left[T_1(\mathbf{x})+T_2(\mathbf{x})\right]+b\left[T_1(\mathbf{y})+T_2(\mathbf{y})\right] \\\\= & a W(\mathbf{x})+b W(\mathbf{y})\end{aligned}$$[/tex]
Therefore, [tex]$W(\mathbf{x})$[/tex] is a linear transformation.
To check whether [tex]$W(\mathbf{x})$[/tex] is onto:
Define the linear transformations:
[tex]$$T_1: \mathbf{R} \rightarrow \mathbf{R}$ such that $T_1(\mathbf{x})=\mathbf{x}$[/tex]
[tex]$$T_2: \mathbf{R} \rightarrow \mathbf{R}$ such that $T_2(\mathbf{x})=-\mathbf{x}$[/tex]
Then, [tex]$T_2(\mathbf{x})=-\mathbf{x}=-T_1(\mathbf{x}) \Rightarrow T_2(\mathbf{x})=-T_1(\mathbf{x})$[/tex]
The range of both functions [tex]$T_1, T_2$ is $\mathbf{R}$[/tex] This is same as the co-domain of [tex]$T_1, T_2$[/tex]. So, they are onto functions.
If A and B are the two sets, if for every element of B, there is at least one or more element matching with set A, it is called the onto function.
Therefore, [tex]$T_1, T_2: \mathbf{R} \rightarrow \mathbf{R}$[/tex]are onto linear transformations.
And, [tex]$W=T_1+T_2: \mathbf{R} \rightarrow \mathbf{R}$[/tex] is a mapping.
Now, [tex]$W(\mathbf{x})=T_1(\mathbf{x})+T_2(\mathbf{x})$[/tex]
[tex]$$\begin{aligned}& =T_1(\mathbf{x})-T_1(\mathbf{x}) \\& =0\end{aligned}$$[/tex]
So, the range of [tex]$$W(\mathbf{x})$ is $\{0\} \neq \mathbf{R}($[/tex] co-domain of [tex]$W(\mathbf{x}))$[/tex]
Then, is [tex]$W(\mathbf{x})$[/tex] not onto.
So, the given statement is false.
Hence, the correct answer is 5th option
For more such questions on linear transformations.
https://brainly.com/question/16287383
#SPJ4