Answer :
The terminal velocity of the 64 kg skydiver is approximately 58.35 m/s and the terminal velocity of the 93 kg skydiver is approximately 69.14 m/s.
The terminal velocity of a skydiver can be calculated using the formula:
Terminal velocity = [tex]\sqrt{\frac{2 \times mass \times gravity}{density \times frontal area \times drag coefficient } }[/tex]
Given:
Frontal area (A) = 0.14 m^2
Mass of the 64 kg skydiver (m1) = 64 kg
Mass of the 93 kg skydiver (m2) = 93 kg
Density of air (ρ) = Assumed to be 1.225 kg/m³
Drag coefficient (C) = Assumed to be 0.5 (typical value for a skydiver in a spread-eagle position)
Using these values, the terminal velocities for both skydivers.
For the 64 kg skydiver:
Terminal velocity (v₁) = [tex]\sqrt{(\frac{2 \times m_1 \times g}{\rho \times A \times C} )[/tex]
Plugging in the values:
v₁ = [tex]\sqrt{\frac{2 \times 64 \times 9.8}{1.225 \times 0.14 \times 0.5} }[/tex]
v₁ = 58.35 m/s
Similarly, for the 93 kg skydiver:
Terminal velocity (v₂) = [tex]\sqrt{(\frac{2 \times m_2 \times g}{\rho \times A \times C} )[/tex]
Plugging in the values:
v₂ = [tex]\sqrt{\frac{2 \times 93 \times 9.8}{1.225 \times 0.14 \times 0.5} }[/tex]
v₂ = 69.14 m/s
Learn more about terminal velocities, here:
https://brainly.com/question/2654450
#SPJ4