High School

If each skydiver has a frontal area of 0.14 m\(^2\), calculate their terminal velocities (in m/s).

- 64 kg skydiver: ___ m/s
- 93 kg skydiver: ___ m/s

Answer :

The terminal velocity of the 64 kg skydiver is approximately 58.35 m/s and the terminal velocity of the 93 kg skydiver is approximately 69.14 m/s.

The terminal velocity of a skydiver can be calculated using the formula:

Terminal velocity = [tex]\sqrt{\frac{2 \times mass \times gravity}{density \times frontal area \times drag coefficient } }[/tex]

Given:

Frontal area (A) = 0.14 m^2

Mass of the 64 kg skydiver (m1) = 64 kg

Mass of the 93 kg skydiver (m2) = 93 kg

Density of air (ρ) = Assumed to be 1.225 kg/m³

Drag coefficient (C) = Assumed to be 0.5 (typical value for a skydiver in a spread-eagle position)

Using these values, the terminal velocities for both skydivers.

For the 64 kg skydiver:

Terminal velocity (v₁) = [tex]\sqrt{(\frac{2 \times m_1 \times g}{\rho \times A \times C} )[/tex]

Plugging in the values:

v₁ = [tex]\sqrt{\frac{2 \times 64 \times 9.8}{1.225 \times 0.14 \times 0.5} }[/tex]

v₁ = 58.35 m/s

Similarly, for the 93 kg skydiver:

Terminal velocity (v₂) = [tex]\sqrt{(\frac{2 \times m_2 \times g}{\rho \times A \times C} )[/tex]

Plugging in the values:

v₂ = [tex]\sqrt{\frac{2 \times 93 \times 9.8}{1.225 \times 0.14 \times 0.5} }[/tex]

v₂ = 69.14 m/s

Learn more about terminal velocities, here:

https://brainly.com/question/2654450

#SPJ4