Answer :
To solve the problem of converting [tex]\(1.25 \, \text{ft}^3\)[/tex] to cubic centimeters, you need to use the conversion factor between cubic feet and cubic centimeters.
1 cubic foot [tex]\(= 28316.8466 \, \text{cm}^3 \)[/tex].
Here's the step-by-step process:
1. Identify the given volume in cubic feet:
[tex]\[ \text{Volume} = 1.25 \, \text{ft}^3 \][/tex]
2. Use the conversion factor between cubic feet and cubic centimeters:
[tex]\[ 1 \, \text{ft}^3 = 28316.8466 \, \text{cm}^3 \][/tex]
3. Multiply the given volume by the conversion factor:
[tex]\[ \text{Volume in cm}^3 = 1.25 \, \text{ft}^3 \times 28316.8466 \, \text{cm}^3/\text{ft}^3 \][/tex]
4. Perform the multiplication:
[tex]\[ 1.25 \times 28316.8466 = 35396.05825 \, \text{cm}^3 \][/tex]
Therefore, the volume [tex]\(1.25 \, \text{ft}^3\)[/tex] is equal to [tex]\(35396.05825 \, \text{cm}^3\)[/tex].
Given the choices:
A) 246
B) [tex]\(5.49 \times 10^3\)[/tex]
C) [tex]\(3.54 \times 10^4\)[/tex]
D) 38.1
E) none of the above
The closest option is C) [tex]\(3.54 \times 10^4\)[/tex], because:
[tex]\[ 3.54 \times 10^4 = 35400 \, \text{cm}^3 \][/tex]
This rounds very closely to 35396.05825.
Therefore, the correct answer is C) [tex]\(3.54 \times 10^4\)[/tex].
1 cubic foot [tex]\(= 28316.8466 \, \text{cm}^3 \)[/tex].
Here's the step-by-step process:
1. Identify the given volume in cubic feet:
[tex]\[ \text{Volume} = 1.25 \, \text{ft}^3 \][/tex]
2. Use the conversion factor between cubic feet and cubic centimeters:
[tex]\[ 1 \, \text{ft}^3 = 28316.8466 \, \text{cm}^3 \][/tex]
3. Multiply the given volume by the conversion factor:
[tex]\[ \text{Volume in cm}^3 = 1.25 \, \text{ft}^3 \times 28316.8466 \, \text{cm}^3/\text{ft}^3 \][/tex]
4. Perform the multiplication:
[tex]\[ 1.25 \times 28316.8466 = 35396.05825 \, \text{cm}^3 \][/tex]
Therefore, the volume [tex]\(1.25 \, \text{ft}^3\)[/tex] is equal to [tex]\(35396.05825 \, \text{cm}^3\)[/tex].
Given the choices:
A) 246
B) [tex]\(5.49 \times 10^3\)[/tex]
C) [tex]\(3.54 \times 10^4\)[/tex]
D) 38.1
E) none of the above
The closest option is C) [tex]\(3.54 \times 10^4\)[/tex], because:
[tex]\[ 3.54 \times 10^4 = 35400 \, \text{cm}^3 \][/tex]
This rounds very closely to 35396.05825.
Therefore, the correct answer is C) [tex]\(3.54 \times 10^4\)[/tex].