Answer :
There are [tex]\( 2.44 \times 10^{24} \)[/tex] atoms of calcium in 163 grams of calcium.
To calculate the total atoms in 163 g of calcium-
[tex]\[ \text{moles of calcium} = \frac{\text{mass of calcium}}{\text{molar mass of calcium}} \] \[ \text{moles of calcium} = \frac{163 \text{ g}}{40.08 \text{ g/mol}} \] \[ \text{moles of calcium} \approx 4.067 \text{ moles} \][/tex]
Next, we multiply the number of moles by Avogadro's number to find the number of atoms:
[tex]\[ \text{number of atoms} = \text{moles of calcium} \times \text{Avogadro's number} \] \[ \text{number of atoms} \approx 4.067 \text{ moles} \times 6.022 \times 10^{23} \text{ atoms/mole} \] \[ \text{number of atoms} \approx 2.44 \times 10^{24} \text{ atoms} \][/tex]
Therefore, there are [tex]\( 2.44 \times 10^{24} \)[/tex] atoms of calcium in 163 grams of calcium.
Answer: [tex]24.5\times 10^{23}atoms[/tex]
Explanation:
According to avogadro's law, 1 mole of every substance weighs equal to its molecular mass and contains avogadro's number [tex]6.023\times 10^{23}[/tex] of particles.
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar Mass}}=\frac{163g}{40g/mol}=4.075moles[/tex]
1 mole of calcium contains = [tex]6.023\times 10^{23}atoms[/tex]
Thus 4.075 moles of calcium contains = [tex]\frac{6.023\times 10^{23}}{1}\times 4.075 =24.5\times 10^{23}atoms[/tex]
Thus there are [tex]24.5\times 10^{23}atoms[/tex] in 163 g of calcium.