Answer :
To find [tex]\( F(-5) \)[/tex] for the polynomial function [tex]\( F(x) = x^2 - 2x - 7 \)[/tex], we need to substitute [tex]\( x = -5 \)[/tex] into the polynomial and perform the calculations. Here’s how you do it step-by-step:
1. Substitute [tex]\( x = -5 \)[/tex] into the function:
[tex]\( F(-5) = (-5)^2 - 2(-5) - 7 \)[/tex]
2. Calculate each term:
- [tex]\( (-5)^2 = 25 \)[/tex] (since a negative number squared becomes positive)
- [tex]\( -2(-5) = 10 \)[/tex] (multiplying two negative numbers results in a positive number)
- And finally, there's [tex]\( -7 \)[/tex]
3. Combine the results:
- Add these values together: [tex]\( 25 + 10 - 7 \)[/tex].
4. Perform the addition and subtraction:
- [tex]\( 25 + 10 = 35 \)[/tex]
- [tex]\( 35 - 7 = 28 \)[/tex]
Therefore, [tex]\( F(-5) = 28 \)[/tex].
So, the correct answer is C. 28.
1. Substitute [tex]\( x = -5 \)[/tex] into the function:
[tex]\( F(-5) = (-5)^2 - 2(-5) - 7 \)[/tex]
2. Calculate each term:
- [tex]\( (-5)^2 = 25 \)[/tex] (since a negative number squared becomes positive)
- [tex]\( -2(-5) = 10 \)[/tex] (multiplying two negative numbers results in a positive number)
- And finally, there's [tex]\( -7 \)[/tex]
3. Combine the results:
- Add these values together: [tex]\( 25 + 10 - 7 \)[/tex].
4. Perform the addition and subtraction:
- [tex]\( 25 + 10 = 35 \)[/tex]
- [tex]\( 35 - 7 = 28 \)[/tex]
Therefore, [tex]\( F(-5) = 28 \)[/tex].
So, the correct answer is C. 28.