Answer :
To solve the equation [tex]\( y = 20000(1.04)^c \)[/tex] and find the value of [tex]\( y \)[/tex] for a specific value of [tex]\( c \)[/tex], let's take [tex]\( c = 2 \)[/tex] as an example.
1. Substitute [tex]\( c = 2 \)[/tex] into the equation:
The equation becomes [tex]\( y = 20000(1.04)^2 \)[/tex].
2. Calculate [tex]\( 1.04^2 \)[/tex]:
First, calculate [tex]\( 1.04 \times 1.04 \)[/tex]. This equals [tex]\( 1.0816 \)[/tex].
3. Multiply by 20000:
Now, multiply the result by 20000.
[tex]\[
y = 20000 \times 1.0816 = 21632
\][/tex]
Therefore, when [tex]\( c = 2 \)[/tex], the value of [tex]\( y \)[/tex] is approximately [tex]\( 21632 \)[/tex].
1. Substitute [tex]\( c = 2 \)[/tex] into the equation:
The equation becomes [tex]\( y = 20000(1.04)^2 \)[/tex].
2. Calculate [tex]\( 1.04^2 \)[/tex]:
First, calculate [tex]\( 1.04 \times 1.04 \)[/tex]. This equals [tex]\( 1.0816 \)[/tex].
3. Multiply by 20000:
Now, multiply the result by 20000.
[tex]\[
y = 20000 \times 1.0816 = 21632
\][/tex]
Therefore, when [tex]\( c = 2 \)[/tex], the value of [tex]\( y \)[/tex] is approximately [tex]\( 21632 \)[/tex].