High School

Given the function [tex]f(x, y, z) = xy^2 - \sqrt{5}xz + 69[/tex], compute the gradient vector [tex]\nabla f(x, y, z)[/tex] at the point [tex](-4, 5, -3)[/tex].

Answer :

The gradient vector ∇f(x, y, z) of the function f(x, y, z) = xy² - √5xz + 69 at the point (-4, 5, -3) is: ∇f(-4, 5, -3) = (25 - √15, -40, 4√5)

To compute the gradient vector ∇f(x, y, z) of the given function f(x, y, z) = xy² - √5xz + 69 at the point (-4, 5, -3), we need to find the partial derivatives of the function with respect to x, y, and z, and then evaluate them at the given point.

The gradient vector is defined as:

∇f(x, y, z) = (∂f/∂x, ∂f/∂y, ∂f/∂z)

Step 1: Find the partial derivatives of the function.

∂f/∂x = y² - √5z

∂f/∂y = 2xy

∂f/∂z = -√5x

Step 2: Evaluate the partial derivatives at the point (-4, 5, -3).

∂f/∂x = 5² - √5(-3) = 25 - √15

∂f/∂y = 2(-4)(5) = -40

∂f/∂z = -√5(-4) = 4√5

Step 3: Construct the gradient vector.

∇f(x, y, z) = (∂f/∂x, ∂f/∂y, ∂f/∂z)

∇f(-4, 5, -3) = (25 - √15, -40, 4√5)