Given the function [tex]$f(x) = -5x^2 - x + 20$[/tex], find [tex]$f(3)$[/tex].

A. [tex]-28[/tex]
B. [tex]-13[/tex]
C. [tex]62[/tex]
D. [tex]64[/tex]

Answer :

To find the value of
$$f(3)$$
for the function
$$f(x) = -5x^2 - x + 20,$$
follow these steps:

1. Substitute $x = 3$ into the function:
$$f(3) = -5(3)^2 - 3 + 20.$$

2. Calculate the square of $3$:
$$(3)^2 = 9.$$

3. Multiply $-5$ by $9$:
$$-5 \times 9 = -45.$$

4. Now, add all the terms together:
$$f(3) = -45 - 3 + 20.$$

5. Combine the terms:
$$-45 - 3 = -48,$$
then
$$-48 + 20 = -28.$$

Thus,
$$f(3) = -28.$$