Answer :
To find the value of
$$f(3)$$
for the function
$$f(x) = -5x^2 - x + 20,$$
follow these steps:
1. Substitute $x = 3$ into the function:
$$f(3) = -5(3)^2 - 3 + 20.$$
2. Calculate the square of $3$:
$$(3)^2 = 9.$$
3. Multiply $-5$ by $9$:
$$-5 \times 9 = -45.$$
4. Now, add all the terms together:
$$f(3) = -45 - 3 + 20.$$
5. Combine the terms:
$$-45 - 3 = -48,$$
then
$$-48 + 20 = -28.$$
Thus,
$$f(3) = -28.$$
$$f(3)$$
for the function
$$f(x) = -5x^2 - x + 20,$$
follow these steps:
1. Substitute $x = 3$ into the function:
$$f(3) = -5(3)^2 - 3 + 20.$$
2. Calculate the square of $3$:
$$(3)^2 = 9.$$
3. Multiply $-5$ by $9$:
$$-5 \times 9 = -45.$$
4. Now, add all the terms together:
$$f(3) = -45 - 3 + 20.$$
5. Combine the terms:
$$-45 - 3 = -48,$$
then
$$-48 + 20 = -28.$$
Thus,
$$f(3) = -28.$$