Answer :
We start with the function
[tex]$$
f(x) = -5x^2 - x + 20.
$$[/tex]
To find [tex]$f(3)$[/tex], follow these steps:
1. Substitute [tex]$x = 3$[/tex]:
[tex]$$
f(3) = -5(3)^2 - 3 + 20.
$$[/tex]
2. Compute the square:
[tex]$$
3^2 = 9.
$$[/tex]
3. Multiply by [tex]$-5$[/tex]:
[tex]$$
-5 \times 9 = -45.
$$[/tex]
4. Now, substitute back into the equation:
[tex]$$
f(3) = -45 - 3 + 20.
$$[/tex]
5. Simplify by combining the terms:
[tex]$$
-45 - 3 = -48,
$$[/tex]
so
[tex]$$
-48 + 20 = -28.
$$[/tex]
Thus, the final answer is
[tex]$$
f(3) = -28.
$$[/tex]
[tex]$$
f(x) = -5x^2 - x + 20.
$$[/tex]
To find [tex]$f(3)$[/tex], follow these steps:
1. Substitute [tex]$x = 3$[/tex]:
[tex]$$
f(3) = -5(3)^2 - 3 + 20.
$$[/tex]
2. Compute the square:
[tex]$$
3^2 = 9.
$$[/tex]
3. Multiply by [tex]$-5$[/tex]:
[tex]$$
-5 \times 9 = -45.
$$[/tex]
4. Now, substitute back into the equation:
[tex]$$
f(3) = -45 - 3 + 20.
$$[/tex]
5. Simplify by combining the terms:
[tex]$$
-45 - 3 = -48,
$$[/tex]
so
[tex]$$
-48 + 20 = -28.
$$[/tex]
Thus, the final answer is
[tex]$$
f(3) = -28.
$$[/tex]