Answer :
To find [tex]$f(3)$[/tex] for the function
[tex]$$
f(x) = -5x^2 - x + 20,
$$[/tex]
we substitute [tex]$x = 3$[/tex] into the expression. Here is the step-by-step process:
1. Substitute [tex]$x = 3$[/tex]:
[tex]$$
f(3) = -5(3)^2 - 3 + 20.
$$[/tex]
2. Calculate the square of [tex]$3$[/tex]:
[tex]$$
(3)^2 = 9.
$$[/tex]
3. Multiply [tex]$-5$[/tex] by [tex]$9$[/tex]:
[tex]$$
-5 \times 9 = -45.
$$[/tex]
4. Now combine all the terms:
[tex]$$
f(3) = -45 - 3 + 20.
$$[/tex]
5. First, add [tex]$-45$[/tex] and [tex]$-3$[/tex]:
[tex]$$
-45 - 3 = -48.
$$[/tex]
6. Then, add [tex]$20$[/tex]:
[tex]$$
-48 + 20 = -28.
$$[/tex]
Thus, the final result is:
[tex]$$
f(3) = -28.
$$[/tex]
[tex]$$
f(x) = -5x^2 - x + 20,
$$[/tex]
we substitute [tex]$x = 3$[/tex] into the expression. Here is the step-by-step process:
1. Substitute [tex]$x = 3$[/tex]:
[tex]$$
f(3) = -5(3)^2 - 3 + 20.
$$[/tex]
2. Calculate the square of [tex]$3$[/tex]:
[tex]$$
(3)^2 = 9.
$$[/tex]
3. Multiply [tex]$-5$[/tex] by [tex]$9$[/tex]:
[tex]$$
-5 \times 9 = -45.
$$[/tex]
4. Now combine all the terms:
[tex]$$
f(3) = -45 - 3 + 20.
$$[/tex]
5. First, add [tex]$-45$[/tex] and [tex]$-3$[/tex]:
[tex]$$
-45 - 3 = -48.
$$[/tex]
6. Then, add [tex]$20$[/tex]:
[tex]$$
-48 + 20 = -28.
$$[/tex]
Thus, the final result is:
[tex]$$
f(3) = -28.
$$[/tex]