Answer :
To find [tex]\( f(3) \)[/tex] for the function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], follow these steps:
1. Substitute [tex]\( x = 3 \)[/tex] into the function: Replace the [tex]\( x \)[/tex] in the function with 3.
So, the expression becomes:
[tex]\[
f(3) = -5(3)^2 - 3 + 20
\][/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[
3^2 = 9
\][/tex]
3. Multiply by -5:
[tex]\[
-5 \times 9 = -45
\][/tex]
4. Add the next term:
Subtract 3 from -45.
[tex]\[
-45 - 3 = -48
\][/tex]
5. Finally, add 20:
[tex]\[
-48 + 20 = -28
\][/tex]
So, [tex]\( f(3) = -28 \)[/tex].
1. Substitute [tex]\( x = 3 \)[/tex] into the function: Replace the [tex]\( x \)[/tex] in the function with 3.
So, the expression becomes:
[tex]\[
f(3) = -5(3)^2 - 3 + 20
\][/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[
3^2 = 9
\][/tex]
3. Multiply by -5:
[tex]\[
-5 \times 9 = -45
\][/tex]
4. Add the next term:
Subtract 3 from -45.
[tex]\[
-45 - 3 = -48
\][/tex]
5. Finally, add 20:
[tex]\[
-48 + 20 = -28
\][/tex]
So, [tex]\( f(3) = -28 \)[/tex].