Answer :
To find [tex]\( f(3) \)[/tex] for the function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], follow these steps:
1. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\( f(3) = -5(3)^2 - (3) + 20 \)[/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\( 3^2 = 9 \)[/tex]
3. Multiply by -5:
[tex]\(-5 \times 9 = -45\)[/tex]
4. Substitute back into the function:
So, [tex]\( f(3) = -45 - 3 + 20 \)[/tex]
5. Simplify step-by-step:
First, add [tex]\(-45\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\(-45 - 3 = -48\)[/tex]
Then add 20:
[tex]\(-48 + 20 = -28\)[/tex]
6. Conclusion:
Therefore, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex].
The correct answer is [tex]\(-28\)[/tex].
1. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\( f(3) = -5(3)^2 - (3) + 20 \)[/tex]
2. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\( 3^2 = 9 \)[/tex]
3. Multiply by -5:
[tex]\(-5 \times 9 = -45\)[/tex]
4. Substitute back into the function:
So, [tex]\( f(3) = -45 - 3 + 20 \)[/tex]
5. Simplify step-by-step:
First, add [tex]\(-45\)[/tex] and [tex]\(-3\)[/tex]:
[tex]\(-45 - 3 = -48\)[/tex]
Then add 20:
[tex]\(-48 + 20 = -28\)[/tex]
6. Conclusion:
Therefore, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex].
The correct answer is [tex]\(-28\)[/tex].