College

Given the function [tex]$f(x) = -5x^2 - x + 20$[/tex], find [tex]$f(3)$[/tex].

A. [tex]-28[/tex]
B. [tex]-13[/tex]
C. 62
D. 64

Answer :

To find [tex]\( f(3) \)[/tex] for the function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], follow these steps:

1. Substitute [tex]\( x = 3 \)[/tex] into the function:

[tex]\( f(3) = -5(3)^2 - (3) + 20 \)[/tex]

2. Calculate [tex]\( 3^2 \)[/tex]:

[tex]\( 3^2 = 9 \)[/tex]

3. Multiply by -5:

[tex]\(-5 \times 9 = -45\)[/tex]

4. Substitute back into the function:

So, [tex]\( f(3) = -45 - 3 + 20 \)[/tex]

5. Simplify step-by-step:

First, add [tex]\(-45\)[/tex] and [tex]\(-3\)[/tex]:

[tex]\(-45 - 3 = -48\)[/tex]

Then add 20:

[tex]\(-48 + 20 = -28\)[/tex]

6. Conclusion:

Therefore, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex].

The correct answer is [tex]\(-28\)[/tex].