Answer :
To find [tex]\( f(3) \)[/tex] for the function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], we'll substitute [tex]\( x = 3 \)[/tex] into the function and perform the calculations step by step.
1. Start with the function:
[tex]\[
f(x) = -5x^2 - x + 20
\][/tex]
2. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[
f(3) = -5(3)^2 - (3) + 20
\][/tex]
3. Calculate [tex]\( (3)^2 \)[/tex]:
[tex]\[
(3)^2 = 9
\][/tex]
4. Multiply -5 by 9:
[tex]\[
-5 \times 9 = -45
\][/tex]
5. Now substitute these into the expression:
[tex]\[
f(3) = -45 - 3 + 20
\][/tex]
6. Simplify further by combining the terms:
[tex]\[
f(3) = -45 - 3 = -48
\][/tex]
[tex]\[
f(3) = -48 + 20 = -28
\][/tex]
Therefore, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex]. So, the correct answer is [tex]\(-28\)[/tex].
1. Start with the function:
[tex]\[
f(x) = -5x^2 - x + 20
\][/tex]
2. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[
f(3) = -5(3)^2 - (3) + 20
\][/tex]
3. Calculate [tex]\( (3)^2 \)[/tex]:
[tex]\[
(3)^2 = 9
\][/tex]
4. Multiply -5 by 9:
[tex]\[
-5 \times 9 = -45
\][/tex]
5. Now substitute these into the expression:
[tex]\[
f(3) = -45 - 3 + 20
\][/tex]
6. Simplify further by combining the terms:
[tex]\[
f(3) = -45 - 3 = -48
\][/tex]
[tex]\[
f(3) = -48 + 20 = -28
\][/tex]
Therefore, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex]. So, the correct answer is [tex]\(-28\)[/tex].