High School

Given the function [tex]f(x) = -5x^2 - x + 20[/tex], find [tex]f(3)[/tex].

A. -28
B. -13
C. 62
D. 64

Answer :

To find [tex]\( f(3) \)[/tex] for the function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], we'll substitute [tex]\( x = 3 \)[/tex] into the function and evaluate.

1. Start with the function:
[tex]\( f(x) = -5x^2 - x + 20 \)[/tex]

2. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\( f(3) = -5(3)^2 - (3) + 20 \)[/tex]

3. Calculate [tex]\(3^2\)[/tex]:
[tex]\( 3^2 = 9 \)[/tex]

4. Substitute [tex]\(9\)[/tex] back into the equation:
[tex]\( f(3) = -5 \times 9 - 3 + 20 \)[/tex]

5. Multiply [tex]\(-5\)[/tex] by [tex]\(9\)[/tex]:
[tex]\(-5 \times 9 = -45\)[/tex]

6. Substitute [tex]\(-45\)[/tex] into the equation:
[tex]\( f(3) = -45 - 3 + 20 \)[/tex]

7. Add and subtract the values:
[tex]\(-45 - 3 = -48\)[/tex]
[tex]\(-48 + 20 = -28\)[/tex]

So, [tex]\( f(3) = -28 \)[/tex].