Answer :
To find [tex]\( f(3) \)[/tex] for the function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], follow these steps:
1. Substitute 3 for [tex]\( x \)[/tex] in the function:
[tex]\( f(3) = -5(3)^2 - 3 + 20 \)[/tex].
2. Calculate the square of 3:
[tex]\( 3^2 = 9 \)[/tex].
3. Multiply by -5:
[tex]\( -5 \times 9 = -45 \)[/tex].
4. Subtract 3 from the result:
[tex]\( -45 - 3 = -48 \)[/tex].
5. Add 20:
[tex]\( -48 + 20 = -28 \)[/tex].
So, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex].
1. Substitute 3 for [tex]\( x \)[/tex] in the function:
[tex]\( f(3) = -5(3)^2 - 3 + 20 \)[/tex].
2. Calculate the square of 3:
[tex]\( 3^2 = 9 \)[/tex].
3. Multiply by -5:
[tex]\( -5 \times 9 = -45 \)[/tex].
4. Subtract 3 from the result:
[tex]\( -45 - 3 = -48 \)[/tex].
5. Add 20:
[tex]\( -48 + 20 = -28 \)[/tex].
So, the value of [tex]\( f(3) \)[/tex] is [tex]\(-28\)[/tex].