Answer :
To find the value of the function [tex]\( f(x) = x^2 - 5x - 6 \)[/tex] at [tex]\( x = -4 \)[/tex], you just need to substitute [tex]\(-4\)[/tex] into the function in place of [tex]\( x \)[/tex].
Here's how you do it step-by-step:
1. Start with the given function:
[tex]\[
f(x) = x^2 - 5x - 6
\][/tex]
2. Substitute [tex]\( x = -4 \)[/tex] into the function:
[tex]\[
f(-4) = (-4)^2 - 5(-4) - 6
\][/tex]
3. Calculate each part:
- [tex]\((-4)^2 = 16\)[/tex]
- [tex]\(-5 \times (-4) = 20\)[/tex]
4. Plug these values back into the equation:
[tex]\[
f(-4) = 16 + 20 - 6
\][/tex]
5. Add and subtract the numbers:
[tex]\[
16 + 20 = 36
\][/tex]
[tex]\[
36 - 6 = 30
\][/tex]
So, the value of [tex]\( f(-4) \)[/tex] is 30.
Here's how you do it step-by-step:
1. Start with the given function:
[tex]\[
f(x) = x^2 - 5x - 6
\][/tex]
2. Substitute [tex]\( x = -4 \)[/tex] into the function:
[tex]\[
f(-4) = (-4)^2 - 5(-4) - 6
\][/tex]
3. Calculate each part:
- [tex]\((-4)^2 = 16\)[/tex]
- [tex]\(-5 \times (-4) = 20\)[/tex]
4. Plug these values back into the equation:
[tex]\[
f(-4) = 16 + 20 - 6
\][/tex]
5. Add and subtract the numbers:
[tex]\[
16 + 20 = 36
\][/tex]
[tex]\[
36 - 6 = 30
\][/tex]
So, the value of [tex]\( f(-4) \)[/tex] is 30.