Answer :
To solve for [tex]\( L_1 \)[/tex] and make it the subject of the formula from the equation [tex]\( A = \frac{1}{2}(L_1 + L_2) h \)[/tex], follow these steps:
1. Start with the original formula:
[tex]\[
A = \frac{1}{2}(L_1 + L_2)h
\][/tex]
2. Eliminate the fraction by multiplying both sides by 2:
[tex]\[
2A = (L_1 + L_2)h
\][/tex]
3. Isolate [tex]\( (L_1 + L_2) \)[/tex] by dividing both sides by [tex]\( h \)[/tex]:
[tex]\[
\frac{2A}{h} = L_1 + L_2
\][/tex]
4. Solve for [tex]\( L_1 \)[/tex] by subtracting [tex]\( L_2 \)[/tex] from both sides:
[tex]\[
L_1 = \frac{2A}{h} - L_2
\][/tex]
This final equation expresses [tex]\( L_1 \)[/tex] in terms of [tex]\( A \)[/tex], [tex]\( h \)[/tex], and [tex]\( L_2 \)[/tex].
1. Start with the original formula:
[tex]\[
A = \frac{1}{2}(L_1 + L_2)h
\][/tex]
2. Eliminate the fraction by multiplying both sides by 2:
[tex]\[
2A = (L_1 + L_2)h
\][/tex]
3. Isolate [tex]\( (L_1 + L_2) \)[/tex] by dividing both sides by [tex]\( h \)[/tex]:
[tex]\[
\frac{2A}{h} = L_1 + L_2
\][/tex]
4. Solve for [tex]\( L_1 \)[/tex] by subtracting [tex]\( L_2 \)[/tex] from both sides:
[tex]\[
L_1 = \frac{2A}{h} - L_2
\][/tex]
This final equation expresses [tex]\( L_1 \)[/tex] in terms of [tex]\( A \)[/tex], [tex]\( h \)[/tex], and [tex]\( L_2 \)[/tex].