College

Given the following reactions:

[tex]\[ S(s) + O_2(g) \rightarrow SO_2(g) \quad \Delta H^{\circ} = -296.1 \, \text{kJ} \][/tex]

[tex]\[ 2 \, SO_3(g) \rightarrow 2 \, SO_2(g) + O_2(g) \quad \Delta H = +198.2 \, \text{kJ} \][/tex]

Find [tex]\(\Delta H^{\circ}\)[/tex] for the reaction:

[tex]\[ 2 \, S(s) + 3 \, O_2(g) \rightarrow 2 \, SO_3(g) \][/tex]

A) -394.0 kJ
B) +97.9 kJ
C) -97.9 kJ
D) -790.4 kJ

Answer :

To solve this problem and find the enthalpy change ([tex]\(\Delta H^{\circ}\)[/tex]) for the reaction [tex]\(2 \text{S}(s) + 3 \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex], we will use Hess's Law. This principle states that the total enthalpy change for a chemical reaction is the same, no matter how many steps the reaction is carried out in. With the given reactions and their respective enthalpy changes, we can determine the desired [tex]\(\Delta H^{\circ}\)[/tex].

### Step-by-Step Solution:

1. Identify Given Reactions:

- Reaction 1:
[tex]\[
\text{S}(s) + \text{O}_2(g) \rightarrow \text{SO}_2(g) \quad \Delta H^{\circ} = -296.1 \, \text{kJ/mol}
\][/tex]

- Reaction 2 (reverse):
[tex]\[
2 \text{SO}_3(g) \rightarrow 2 \text{SO}_2(g) + \text{O}_2(g) \quad \Delta H = 198.2 \, \text{kJ}
\][/tex]

2. Calculate the Enthalpy Change for the Reverse Formation of [tex]\(\text{SO}_3(g)\)[/tex]:

Since Reaction 2 involves the decomposition of [tex]\(\text{SO}_3(g)\)[/tex], we will reverse it to match the formation from [tex]\(\text{SO}_2(g)\)[/tex]:
[tex]\[
2 \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)
\][/tex]

When reversing a reaction, the sign of [tex]\(\Delta H\)[/tex] changes:
[tex]\[
\Delta H = -198.2 \, \text{kJ}
\][/tex]

3. Apply Hess's Law:

We need to construct the target reaction:
[tex]\[
2 \text{S}(s) + 3 \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)
\][/tex]

This can be done by combining Reaction 1 twice and the reversed Reaction 2:

- Two moles of [tex]\(\text{SO}_2\)[/tex] are formed from two moles of [tex]\(\text{S}\)[/tex]:
[tex]\[
2 \left( \text{S}(s) + \text{O}_2(g) \rightarrow \text{SO}_2(g) \right) \quad \Delta H = 2(-296.1) \, \text{kJ} = -592.2 \, \text{kJ}
\][/tex]

- Then, combine with the reversed Reaction 2 (formation of [tex]\(\text{SO}_3\)[/tex]):
[tex]\[
2 \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g) \quad \Delta H = -198.2 \, \text{kJ}
\][/tex]

4. Calculate the Overall Enthalpy Change:

Add the enthalpy changes from the steps above to find the enthalpy change for the overall reaction:
[tex]\[
\Delta H^{\circ} = -592.2 \, \text{kJ} + (-198.2) \, \text{kJ} = -790.4 \, \text{kJ}
\][/tex]

Therefore, the enthalpy change for the reaction [tex]\(2 \text{S}(s) + 3 \text{O}_2(g) \rightarrow 2 \text{SO}_3(g)\)[/tex] is [tex]\(-790.4 \, \text{kJ}\)[/tex].

The correct answer is D) -790.4 kJ.