High School

Given the equation:

[tex]
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - (x-4)
[/tex]

Her work is shown below:

[tex]
\begin{align*}
\frac{1}{2}(x-14) + 11 & = \frac{1}{2}x - (x-4) \\
\frac{1}{2}x - 7 + 11 & = \frac{1}{2}x - x + 4 \\
\frac{1}{2}x + 4 & = -\frac{1}{2}x + 4
\end{align*}
[/tex]

When she subtracts 4 from both sides, it results in:

[tex]
\frac{1}{2}x = -\frac{1}{2}x
[/tex]

What is the value of [tex]x[/tex]?

A. [tex]-1[/tex]

B. [tex]-\frac{1}{2}[/tex]

C. 0

D. [tex]\frac{1}{2}[/tex]

Answer :

Certainly! Let's solve the equation step by step.

We start with the given equation:

[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2} x - (x-4)
\][/tex]

Step 1: Distribute and simplify both sides.

On the left side:
[tex]\[
\frac{1}{2}(x-14) + 11 = \frac{1}{2}x - 7 + 11
\][/tex]

This simplifies to:
[tex]\[
\frac{1}{2}x + 4
\][/tex]

On the right side:
[tex]\[
\frac{1}{2}x - (x - 4) = \frac{1}{2}x - x + 4
\][/tex]

This simplifies to:
[tex]\[
-\frac{1}{2}x + 4
\][/tex]

Now our equation is:
[tex]\[
\frac{1}{2}x + 4 = -\frac{1}{2}x + 4
\][/tex]

Step 2: Eliminate the constant term `4` from both sides.

Subtract 4 from both sides:
[tex]\[
\frac{1}{2}x + 4 - 4 = -\frac{1}{2}x + 4 - 4
\][/tex]

This simplifies to:
[tex]\[
\frac{1}{2}x = -\frac{1}{2}x
\][/tex]

Step 3: Add [tex]\(\frac{1}{2}x\)[/tex] to both sides to combine `x` terms.

[tex]\[
\frac{1}{2}x + \frac{1}{2}x = -\frac{1}{2}x + \frac{1}{2}x
\][/tex]

This simplifies to:
[tex]\[
x = 0
\][/tex]

Therefore, the value of [tex]\(x\)[/tex] is [tex]\(\boxed{0}\)[/tex].