High School

Given that [tex] y [/tex] is inversely proportional to [tex] x [/tex], and when [tex] y = 6 [/tex], [tex] x = 8 [/tex]:

a) Work out an equation connecting [tex] y [/tex] and [tex] x [/tex].

b) Work out the value of [tex] y [/tex] when [tex] x = 12 [/tex].

Answer :

Certainly! Let's work through this step-by-step:

a) We are told that [tex]\( y \)[/tex] is inversely proportional to [tex]\( x \)[/tex]. This means the relationship can be described by the equation:

[tex]\[ y = \frac{k}{x} \][/tex]

where [tex]\( k \)[/tex] is a constant. To find the value of [tex]\( k \)[/tex], we use the information given: when [tex]\( y = 6 \)[/tex], [tex]\( x = 8 \)[/tex].

Substitute these values into the equation:

[tex]\[ 6 = \frac{k}{8} \][/tex]

To solve for [tex]\( k \)[/tex], multiply both sides of the equation by 8:

[tex]\[ k = 6 \times 8 \][/tex]

[tex]\[ k = 48 \][/tex]

So the equation connecting [tex]\( y \)[/tex] and [tex]\( x \)[/tex] is:

[tex]\[ y = \frac{48}{x} \][/tex]

b) To find the value of [tex]\( y \)[/tex] when [tex]\( x = 12 \)[/tex], use the equation we found:

[tex]\[ y = \frac{48}{x} \][/tex]

Substitute [tex]\( x = 12 \)[/tex] into the equation:

[tex]\[ y = \frac{48}{12} \][/tex]

[tex]\[ y = 4 \][/tex]

So, when [tex]\( x = 12 \)[/tex], the value of [tex]\( y \)[/tex] is 4.