College

Given: [tex]f(x) = 5x^4 - 3x^2 + 6x + 2[/tex].

Find [tex]f(-2)[/tex].

Options:
A. -28
B. 10
C. 14
D. 58
E. 82

Answer :

We are given the function
[tex]$$
f(x) = 5x^4 - 3x^2 + 6x + 2
$$[/tex]
and we need to calculate [tex]$f(-2)$[/tex].

Step 1: Substitute [tex]$x = -2$[/tex] into the function:
[tex]$$
f(-2) = 5(-2)^4 - 3(-2)^2 + 6(-2) + 2
$$[/tex]

Step 2: Evaluate each term one by one.

1. Calculate [tex]$(-2)^4$[/tex]:
[tex]$$
(-2)^4 = 16
$$[/tex]
Then the first term is:
[tex]$$
5(-2)^4 = 5 \times 16 = 80
$$[/tex]

2. Calculate [tex]$(-2)^2$[/tex]:
[tex]$$
(-2)^2 = 4
$$[/tex]
Then the second term is:
[tex]$$
-3(-2)^2 = -3 \times 4 = -12
$$[/tex]

3. Evaluate the third term:
[tex]$$
6(-2) = -12
$$[/tex]

4. The constant term remains:
[tex]$$
2
$$[/tex]

Step 3: Combine all terms:
[tex]$$
f(-2) = 80 - 12 - 12 + 2
$$[/tex]

Step 4: Perform the arithmetic step-by-step:
\begin{align}
80 - 12 &= 68, \\
68 - 12 &= 56, \\
56 + 2 &= 58.
\end{align
}

Thus, the final result is:
[tex]$$
f(-2) = 58.
$$[/tex]