College

Given [tex]f = c d^3[/tex], [tex]f = 450[/tex], and [tex]d = 10[/tex], what is [tex]c[/tex]?

A. 0.45
B. 4.5
C. 15
D. 45
E. 150

Answer :

To solve for [tex]\( c \)[/tex] in the equation [tex]\( f = c \cdot d^3 \)[/tex], where [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex], we can follow these steps:

1. Identify the Values:
- We have [tex]\( f = 450 \)[/tex].
- We have [tex]\( d = 10 \)[/tex].

2. Use the Given Expression:
- The equation is [tex]\( f = c \cdot d^3 \)[/tex].

3. Rearrange the Equation to Solve for [tex]\( c \)[/tex]:
- We want to solve for [tex]\( c \)[/tex], so we rearrange the equation as:
[tex]\[
c = \frac{f}{d^3}
\][/tex]

4. Substitute the Known Values:
- Plug in [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex] into the equation:
[tex]\[
c = \frac{450}{10^3}
\][/tex]

5. Calculate [tex]\( d^3 \)[/tex]:
- Calculate [tex]\( 10^3 \)[/tex], which is 1000.

6. Complete the Calculation:
- Now, calculate [tex]\( c \)[/tex] by dividing 450 by 1000:
[tex]\[
c = \frac{450}{1000} = 0.45
\][/tex]

So, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].