Answer :
To solve the problem, we need to find the value of [tex]\( c \)[/tex] in the equation [tex]\( f = c \cdot d^3 \)[/tex].
1. Identify the given values:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
2. Substitute the given values into the equation:
[tex]\[
450 = c \cdot 10^3
\][/tex]
3. Calculate [tex]\( 10^3 \)[/tex] (10 cubed):
[tex]\[
10^3 = 10 \times 10 \times 10 = 1000
\][/tex]
4. Substitute [tex]\( 1000 \)[/tex] in place of [tex]\( 10^3 \)[/tex]:
[tex]\[
450 = c \cdot 1000
\][/tex]
5. Solve for [tex]\( c \)[/tex]:
[tex]\[
c = \frac{450}{1000}
\][/tex]
6. Calculate the division:
[tex]\[
c = 0.45
\][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].
1. Identify the given values:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
2. Substitute the given values into the equation:
[tex]\[
450 = c \cdot 10^3
\][/tex]
3. Calculate [tex]\( 10^3 \)[/tex] (10 cubed):
[tex]\[
10^3 = 10 \times 10 \times 10 = 1000
\][/tex]
4. Substitute [tex]\( 1000 \)[/tex] in place of [tex]\( 10^3 \)[/tex]:
[tex]\[
450 = c \cdot 1000
\][/tex]
5. Solve for [tex]\( c \)[/tex]:
[tex]\[
c = \frac{450}{1000}
\][/tex]
6. Calculate the division:
[tex]\[
c = 0.45
\][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].