Answer :
Let's solve the problem step-by-step:
We are given the equation [tex]\( f = c \cdot d^3 \)[/tex], with [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex]. We need to find the value of [tex]\( c \)[/tex].
1. Calculate [tex]\( d^3 \)[/tex]:
Since [tex]\( d = 10 \)[/tex], we need to calculate [tex]\( 10^3 \)[/tex].
[tex]\[ 10^3 = 10 \times 10 \times 10 = 1000 \][/tex]
2. Solve for [tex]\( c \)[/tex]:
We know that [tex]\( f = c \cdot d^3 \)[/tex]. We can solve for [tex]\( c \)[/tex] by rearranging the equation:
[tex]\[ c = \frac{f}{d^3} \][/tex]
Substitute the known values into the equation:
[tex]\[ c = \frac{450}{1000} \][/tex]
3. Calculate the value of [tex]\( c \)[/tex]:
Divide 450 by 1000 to find [tex]\( c \)[/tex].
[tex]\[ c = 0.45 \][/tex]
So, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].
We are given the equation [tex]\( f = c \cdot d^3 \)[/tex], with [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex]. We need to find the value of [tex]\( c \)[/tex].
1. Calculate [tex]\( d^3 \)[/tex]:
Since [tex]\( d = 10 \)[/tex], we need to calculate [tex]\( 10^3 \)[/tex].
[tex]\[ 10^3 = 10 \times 10 \times 10 = 1000 \][/tex]
2. Solve for [tex]\( c \)[/tex]:
We know that [tex]\( f = c \cdot d^3 \)[/tex]. We can solve for [tex]\( c \)[/tex] by rearranging the equation:
[tex]\[ c = \frac{f}{d^3} \][/tex]
Substitute the known values into the equation:
[tex]\[ c = \frac{450}{1000} \][/tex]
3. Calculate the value of [tex]\( c \)[/tex]:
Divide 450 by 1000 to find [tex]\( c \)[/tex].
[tex]\[ c = 0.45 \][/tex]
So, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].