Answer :
To solve for [tex]\( c \)[/tex] in the equation [tex]\( f = c \cdot d^3 \)[/tex] given that [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex], follow these steps:
1. Identify the formula:
The formula given is [tex]\( f = c \cdot d^3 \)[/tex].
2. Substitute the known values:
Substitute [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex] into the equation:
[tex]\[
450 = c \cdot 10^3
\][/tex]
3. Calculate [tex]\( d^3 \)[/tex]:
Compute [tex]\( 10^3 \)[/tex], which is:
[tex]\[
10^3 = 10 \times 10 \times 10 = 1000
\][/tex]
4. Rearrange the equation to solve for [tex]\( c \)[/tex]:
Divide both sides of the equation by 1000 to isolate [tex]\( c \)[/tex]:
[tex]\[
c = \frac{450}{1000}
\][/tex]
5. Calculate [tex]\( c \)[/tex]:
Perform the division:
[tex]\[
c = 0.45
\][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].
1. Identify the formula:
The formula given is [tex]\( f = c \cdot d^3 \)[/tex].
2. Substitute the known values:
Substitute [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex] into the equation:
[tex]\[
450 = c \cdot 10^3
\][/tex]
3. Calculate [tex]\( d^3 \)[/tex]:
Compute [tex]\( 10^3 \)[/tex], which is:
[tex]\[
10^3 = 10 \times 10 \times 10 = 1000
\][/tex]
4. Rearrange the equation to solve for [tex]\( c \)[/tex]:
Divide both sides of the equation by 1000 to isolate [tex]\( c \)[/tex]:
[tex]\[
c = \frac{450}{1000}
\][/tex]
5. Calculate [tex]\( c \)[/tex]:
Perform the division:
[tex]\[
c = 0.45
\][/tex]
Therefore, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].