Answer :
To solve for [tex]\( c \)[/tex], we start with the formula given:
[tex]\[
f = c \cdot d^3
\][/tex]
We know the values:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
We need to find [tex]\( c \)[/tex]. First, calculate [tex]\( d^3 \)[/tex]:
[tex]\[
d^3 = 10^3 = 1000
\][/tex]
Now, substituting the known values into the equation:
[tex]\[
450 = c \cdot 1000
\][/tex]
To isolate [tex]\( c \)[/tex], divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
When we simplify this fraction:
[tex]\[
c = 0.45
\][/tex]
So, the value of [tex]\( c \)[/tex] is 0.45.
[tex]\[
f = c \cdot d^3
\][/tex]
We know the values:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
We need to find [tex]\( c \)[/tex]. First, calculate [tex]\( d^3 \)[/tex]:
[tex]\[
d^3 = 10^3 = 1000
\][/tex]
Now, substituting the known values into the equation:
[tex]\[
450 = c \cdot 1000
\][/tex]
To isolate [tex]\( c \)[/tex], divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
When we simplify this fraction:
[tex]\[
c = 0.45
\][/tex]
So, the value of [tex]\( c \)[/tex] is 0.45.