Answer :
To solve the problem, we need to find the value of [tex]\( c \)[/tex] in the equation [tex]\( f = c \cdot d^3 \)[/tex], given that [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex].
Here's a step-by-step breakdown of how to find [tex]\( c \)[/tex]:
1. Start with the original equation:
[tex]\( f = c \cdot d^3 \)[/tex]
2. Substitute the known values into the equation:
[tex]\( 450 = c \cdot 10^3 \)[/tex]
3. Calculate [tex]\( 10^3 \)[/tex]:
[tex]\( 10^3 = 10 \times 10 \times 10 = 1000 \)[/tex]
4. Substitute this back into the equation:
[tex]\( 450 = c \cdot 1000 \)[/tex]
5. Solve for [tex]\( c \)[/tex]:
Divide both sides by 1000 to isolate [tex]\( c \)[/tex]:
[tex]\( c = \frac{450}{1000} \)[/tex]
6. Simplify the fraction:
[tex]\( c = 0.45 \)[/tex]
So, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].
Here's a step-by-step breakdown of how to find [tex]\( c \)[/tex]:
1. Start with the original equation:
[tex]\( f = c \cdot d^3 \)[/tex]
2. Substitute the known values into the equation:
[tex]\( 450 = c \cdot 10^3 \)[/tex]
3. Calculate [tex]\( 10^3 \)[/tex]:
[tex]\( 10^3 = 10 \times 10 \times 10 = 1000 \)[/tex]
4. Substitute this back into the equation:
[tex]\( 450 = c \cdot 1000 \)[/tex]
5. Solve for [tex]\( c \)[/tex]:
Divide both sides by 1000 to isolate [tex]\( c \)[/tex]:
[tex]\( c = \frac{450}{1000} \)[/tex]
6. Simplify the fraction:
[tex]\( c = 0.45 \)[/tex]
So, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].