Given:

\[ f = c d^3 \]

\[ f = 450 \]

\[ d = 10 \]

What is the value of \[ c \]?

A. 0.45
B. 4.5
C. 15
D. 45
E. 150

Answer :

To solve the problem, we need to find the value of [tex]\( c \)[/tex] in the equation [tex]\( f = c \cdot d^3 \)[/tex], given that [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex].

Here's a step-by-step breakdown of how to find [tex]\( c \)[/tex]:

1. Start with the original equation:
[tex]\( f = c \cdot d^3 \)[/tex]

2. Substitute the known values into the equation:
[tex]\( 450 = c \cdot 10^3 \)[/tex]

3. Calculate [tex]\( 10^3 \)[/tex]:
[tex]\( 10^3 = 10 \times 10 \times 10 = 1000 \)[/tex]

4. Substitute this back into the equation:
[tex]\( 450 = c \cdot 1000 \)[/tex]

5. Solve for [tex]\( c \)[/tex]:
Divide both sides by 1000 to isolate [tex]\( c \)[/tex]:
[tex]\( c = \frac{450}{1000} \)[/tex]

6. Simplify the fraction:
[tex]\( c = 0.45 \)[/tex]

So, the value of [tex]\( c \)[/tex] is [tex]\( 0.45 \)[/tex].