College

**Gas Laws Fact Sheet**



\[

\begin{array}{|l|l|}

\hline

\text{Ideal gas law} & PV = nRT \\

\hline

\text{Ideal gas constant} & \begin{array}{l}

R = 8.314 \, \frac{L \cdot \text{kPa}}{\text{mol} \cdot K} \\

\text{or} \\

R = 0.0821 \, \frac{L \cdot \text{atm}}{\text{mol} \cdot K}

\end{array} \\

\hline

\text{Standard atmospheric pressure} & 1 \, \text{atm} = 101.3 \, \text{kPa} \\

\hline

\text{Celsius to Kelvin conversion} & K = ^\circ C + 273.15 \\

\hline

\end{array}

\]



Select the correct answer.



The gas in a sealed container has an absolute pressure of 125.4 kilopascals. If the air around the container is at a pressure of 99.8 kilopascals, what is the gauge pressure inside the container?



A. 1.5 kPa

B. 24.1 kPa

C. 25.6 kPa

D. 1126 kPa

E. 225.2 kPa

Answer :

To determine the gauge pressure inside the container, we use the following relation:

$$
\text{Gauge Pressure} = \text{Absolute Pressure} - \text{Atmospheric Pressure}
$$

The absolute pressure is given as $125.4\,\text{kPa}$ and the atmospheric pressure is $99.8\,\text{kPa}$. Substituting these values, we have:

$$
\text{Gauge Pressure} = 125.4\,\text{kPa} - 99.8\,\text{kPa} = 25.6\,\text{kPa}
$$

Thus, the gauge pressure inside the container is $25.6\,\text{kPa}$.

The correct answer is:

C. $25.6\,\text{kPa}$