College

For the exponential function [tex]f(x) = 3 \cdot 25^x[/tex], what is the value of [tex]f\left(\frac{1}{2}\right)[/tex]?

A. 15
B. 225
C. 40
D. 150

Answer :

To find the value of the function [tex]\( f(x) = 3 \cdot 25^x \)[/tex] at [tex]\( x = \frac{1}{2} \)[/tex], we'll substitute [tex]\(\frac{1}{2}\)[/tex] into the function and simplify.

Here's the step-by-step solution:

1. Start with the function:
[tex]\[
f(x) = 3 \cdot 25^x
\][/tex]

2. Substitute [tex]\( x = \frac{1}{2} \)[/tex] into the function:
[tex]\[
f\left(\frac{1}{2}\right) = 3 \cdot 25^{\frac{1}{2}}
\][/tex]

3. Note that raising a number to the power of [tex]\(\frac{1}{2}\)[/tex] is equivalent to taking the square root of that number. Therefore, [tex]\( 25^{\frac{1}{2}} = \sqrt{25} \)[/tex].

4. Calculate the square root of 25:
[tex]\[
\sqrt{25} = 5
\][/tex]

5. Substitute back to find the function value:
[tex]\[
f\left(\frac{1}{2}\right) = 3 \cdot 5
\][/tex]

6. Multiply 3 by 5:
[tex]\[
f\left(\frac{1}{2}\right) = 15
\][/tex]

So, the value of [tex]\( f\left(\frac{1}{2}\right) \)[/tex] is 15.