College

For questions 7-18, compare using benchmark fractions, 0, or 1. Then write [tex] \textgreater [/tex], [tex] \textless [/tex], or [tex] = [/tex].

7. [tex] \frac{3}{4} [/tex] and [tex] \frac{2}{10} [/tex]

8. [tex] \frac{4}{12} [/tex]

9. [tex] \frac{5}{10} [/tex] and [tex] \frac{1}{2} [/tex]

10. [tex] 2 \frac{3}{4} [/tex] and [tex] 2 \frac{5}{6} [/tex]

11. [tex] \frac{7}{8} [/tex] and [tex] \frac{2}{5} [/tex]

12. [tex] \frac{15}{12} [/tex]

13. [tex] \frac{5}{5} [/tex] and [tex] \frac{4}{4} [/tex]

14. [tex] \frac{4}{6} [/tex] and [tex] \frac{1}{3} [/tex]

15. [tex] 1 \frac{1}{3} [/tex] and [tex] \frac{2}{3} [/tex]

16. [tex] \frac{5}{8} [/tex] and [tex] \frac{6}{12} [/tex]

17. [tex] \frac{48}{12} [/tex] and [tex] \frac{10}{5} [/tex]

18. [tex] \frac{2}{12} [/tex] and [tex] \frac{5}{6} [/tex]

Answer :

Certainly! Let's walk through each problem one by one and compare the given fractions using benchmark fractions, 0, or 1. Then, we'll determine whether the fractions are greater than, less than, or equal to each other.

### Problem 7: Compare [tex]\(\frac{3}{4}\)[/tex] and [tex]\(\frac{2}{10}\)[/tex]

1. Convert [tex]\(\frac{2}{10}\)[/tex] to a simpler fraction: [tex]\(\frac{2}{10} = \frac{1}{5}\)[/tex].
2. [tex]\(\frac{3}{4} = 0.75\)[/tex] and [tex]\(\frac{1}{5} = 0.2\)[/tex].
3. Since [tex]\(0.75 > 0.2\)[/tex], we have [tex]\(\frac{3}{4} > \frac{2}{10}\)[/tex].

### Problem 8: Compare [tex]\(\frac{4}{12}\)[/tex] to 0.5

1. Simplify [tex]\(\frac{4}{12}\)[/tex] to [tex]\(\frac{1}{3}\)[/tex].
2. [tex]\(\frac{1}{3} \approx 0.333\)[/tex].
3. Since [tex]\(0.333 < 0.5\)[/tex], we have [tex]\(\frac{4}{12} < 0.5\)[/tex].

### Problem 9: Compare [tex]\(\frac{5}{10}\)[/tex] and [tex]\(\frac{1}{2}\)[/tex]

1. Simplify [tex]\(\frac{5}{10}\)[/tex] to [tex]\(\frac{1}{2}\)[/tex].
2. Both fractions are equal, so [tex]\(\frac{5}{10} = \frac{1}{2}\)[/tex].

### Problem 10: Compare [tex]\(2 \frac{3}{4}\)[/tex] and [tex]\(2 \frac{5}{6}\)[/tex]

1. [tex]\(2 \frac{3}{4} = 2.75\)[/tex] and [tex]\(2 \frac{5}{6} \approx 2.833\)[/tex].
2. Since [tex]\(2.75 < 2.833\)[/tex], we have [tex]\(2 \frac{3}{4} < 2 \frac{5}{6}\)[/tex].

### Problem 11: Compare [tex]\(\frac{7}{8}\)[/tex] and [tex]\(\frac{2}{5}\)[/tex]

1. [tex]\(\frac{7}{8} = 0.875\)[/tex] and [tex]\(\frac{2}{5} = 0.4\)[/tex].
2. Since [tex]\(0.875 > 0.4\)[/tex], we have [tex]\(\frac{7}{8} > \frac{2}{5}\)[/tex].

### Problem 12: Compare [tex]\(\frac{15}{12}\)[/tex] to 1

1. Simplify [tex]\(\frac{15}{12}\)[/tex] to [tex]\(1 \frac{1}{4} \approx 1.25\)[/tex].
2. Since [tex]\(1.25 > 1\)[/tex], we have [tex]\(\frac{15}{12} > 1\)[/tex].

### Problem 13: Compare [tex]\(\frac{5}{5}\)[/tex] and [tex]\(\frac{4}{4}\)[/tex]

1. Both [tex]\(\frac{5}{5}\)[/tex] and [tex]\(\frac{4}{4}\)[/tex] simplify to 1.
2. Therefore, [tex]\(\frac{5}{5} = \frac{4}{4}\)[/tex].

### Problem 14: Compare [tex]\(\frac{4}{6}\)[/tex] and [tex]\(\frac{1}{3}\)[/tex]

1. Simplify [tex]\(\frac{4}{6}\)[/tex] to [tex]\(\frac{2}{3}\)[/tex] and [tex]\(\frac{1}{3} = 0.333\)[/tex].
2. [tex]\(\frac{2}{3} \approx 0.667\)[/tex].
3. Since [tex]\(0.667 > 0.333\)[/tex], we have [tex]\(\frac{4}{6} > \(\frac{1}{3}\)[/tex].

### Problem 15: Compare [tex]\(1 \frac{1}{3}\)[/tex] and [tex]\(\frac{2}{3}\)[/tex]

1. [tex]\(1 \frac{1}{3} \approx 1.333\)[/tex] and [tex]\(\frac{2}{3} \approx 0.667\)[/tex].
2. Since [tex]\(1.333 > 0.667\)[/tex], we have [tex]\(1 \frac{1}{3} > \(\frac{2}{3}\)[/tex].

### Problem 16: Compare [tex]\(\frac{5}{8}\)[/tex] and [tex]\(\frac{6}{12}\)[/tex]

1. Simplify [tex]\(\frac{6}{12}\)[/tex] to [tex]\(\frac{1}{2} = 0.5\)[/tex].
2. [tex]\(\frac{5}{8} = 0.625\)[/tex].
3. Since [tex]\(0.625 > 0.5\)[/tex], we have [tex]\(\frac{5}{8} > \(\frac{6}{12}\)[/tex].

### Problem 17: Compare [tex]\(\frac{48}{12}\)[/tex] and [tex]\(\frac{10}{5}\)[/tex]

1. Simplify [tex]\(\frac{48}{12}\)[/tex] to 4 and [tex]\(\frac{10}{5}\)[/tex] to 2.
2. Since 4 is not equal to 2, we have [tex]\(\frac{48}{12} > \(\frac{10}{5}\)[/tex].

### Problem 18: Compare [tex]\(\frac{2}{12}\)[/tex] and [tex]\(\frac{5}{6}\)[/tex]

1. Simplify [tex]\(\frac{2}{12}\)[/tex] to [tex]\(\frac{1}{6}\)[/tex].
2. [tex]\(\frac{1}{6} \approx 0.167\)[/tex] and [tex]\(\frac{5}{6} \approx 0.833\)[/tex].
3. Since [tex]\(0.167 < 0.833\)[/tex], we have [tex]\(\frac{2}{12} < \(\frac{5}{6}\)[/tex].

These are the comparisons for each problem. Let me know if you need any further clarification!