Answer :
To find the volume of a rectangular prism with given dimensions, we use the formula for volume:
[tex]\[ V = l \cdot w \cdot h \][/tex]
where [tex]\( l \)[/tex] is the length, [tex]\( w \)[/tex] is the width, and [tex]\( h \)[/tex] is the height.
For this problem, the dimensions are:
- Length [tex]\( l = 4x \)[/tex]
- Width [tex]\( w = 2x \)[/tex]
- Height [tex]\( h = x^3 + 3x + 6 \)[/tex]
Substituting these into the formula, we get:
[tex]\[ V = (4x) \cdot (2x) \cdot (x^3 + 3x + 6) \][/tex]
First, multiply the length and width:
[tex]\[ 4x \cdot 2x = 8x^2 \][/tex]
Next, multiply this result by the height:
[tex]\[ V = 8x^2 \cdot (x^3 + 3x + 6) \][/tex]
To do this multiplication, apply the distributive property:
1. Multiply [tex]\( 8x^2 \)[/tex] by [tex]\( x^3 \)[/tex]:
[tex]\[ 8x^2 \cdot x^3 = 8x^{5} \][/tex]
2. Multiply [tex]\( 8x^2 \)[/tex] by [tex]\( 3x \)[/tex]:
[tex]\[ 8x^2 \cdot 3x = 24x^{3} \][/tex]
3. Multiply [tex]\( 8x^2 \)[/tex] by [tex]\( 6 \)[/tex]:
[tex]\[ 8x^2 \cdot 6 = 48x^{2} \][/tex]
Add all the terms together to find the expression for the volume:
[tex]\[ V = 8x^5 + 24x^3 + 48x^2 \][/tex]
Therefore, the volume of the rectangular prism is:
[tex]\[ 8x^5 + 24x^3 + 48x^2 \][/tex]
This matches the option: [tex]\( 8x^5 + 24x^3 + 48x^2 \)[/tex].
[tex]\[ V = l \cdot w \cdot h \][/tex]
where [tex]\( l \)[/tex] is the length, [tex]\( w \)[/tex] is the width, and [tex]\( h \)[/tex] is the height.
For this problem, the dimensions are:
- Length [tex]\( l = 4x \)[/tex]
- Width [tex]\( w = 2x \)[/tex]
- Height [tex]\( h = x^3 + 3x + 6 \)[/tex]
Substituting these into the formula, we get:
[tex]\[ V = (4x) \cdot (2x) \cdot (x^3 + 3x + 6) \][/tex]
First, multiply the length and width:
[tex]\[ 4x \cdot 2x = 8x^2 \][/tex]
Next, multiply this result by the height:
[tex]\[ V = 8x^2 \cdot (x^3 + 3x + 6) \][/tex]
To do this multiplication, apply the distributive property:
1. Multiply [tex]\( 8x^2 \)[/tex] by [tex]\( x^3 \)[/tex]:
[tex]\[ 8x^2 \cdot x^3 = 8x^{5} \][/tex]
2. Multiply [tex]\( 8x^2 \)[/tex] by [tex]\( 3x \)[/tex]:
[tex]\[ 8x^2 \cdot 3x = 24x^{3} \][/tex]
3. Multiply [tex]\( 8x^2 \)[/tex] by [tex]\( 6 \)[/tex]:
[tex]\[ 8x^2 \cdot 6 = 48x^{2} \][/tex]
Add all the terms together to find the expression for the volume:
[tex]\[ V = 8x^5 + 24x^3 + 48x^2 \][/tex]
Therefore, the volume of the rectangular prism is:
[tex]\[ 8x^5 + 24x^3 + 48x^2 \][/tex]
This matches the option: [tex]\( 8x^5 + 24x^3 + 48x^2 \)[/tex].