High School

Find the volume of a cube with the following dimensions:

- Length: \(2x^2\)
- Width: \(x^3\)
- Height: \(x^2 - 6x + 5\)

A) \(4x^7 - 3x^6 + 8x^5\)
B) \(2x^{12} - 12x^7 + 10x^6\)
C) \(2x^7 + 12x^6 + 10x^5\)
D) \(2x^7 - 12x^6 + 10x^5\)

Answer :

Answer:

Option D. 2x⁷ - 12x⁶ + 10x⁵

Step-by-step explanation:

From the question given:

Length (L) = 2x²

Width (w) = x³

Height (h) = x² - 6x + 5

Volume (V) =?

Volume (V) = length (L) x width (w) x height (h)

V = L x w x h

V = 2x² × x³ × x² - 6x + 5

V = (2x²) (x³) (x² - 6x + 5)

V = (2x⁵) (x² - 6x + 5)

Clear bracket

V = 2x⁷ - 12x⁶ + 10x⁵

Therefore, the volume of the cube is 2x⁷ - 12x⁶ + 10x⁵