High School

Find the tangent line to the curve

\[
\frac{48x^5 - 60x^{59}y}{x^{60} + 3y^8}
\]

at the point (1, 1).

Answer :

Final Answer:

To find the tangent line to the curve at the point (1,1), we first need to differentiate the given function with respect to x, then substitute x = 1 to find the slope of the tangent line. The resulting equation will represent the tangent line.

Explanation:

Given the function (48x⁵ - 60x⁵⁹⁺⁵⁹y) / (x⁶⁰ + 3y⁸), we differentiate it with respect to x using the quotient rule. After differentiation, we substitute x = 1 to find the slope of the tangent line at the point (1,1).

After calculating the derivative and substituting x = 1, we get the slope of the tangent line. With this information, we can then write the equation of the tangent line using the point-slope form.

The final equation of the tangent line will be in the form y = mx + b, where 'm' is the slope we calculated and 'b' is the y-intercept. This equation represents the tangent line to the curve at the point (1,1).

Learn more about tangent line

brainly.com/question/34159056

#SPJ11