Answer :
To find the sum of the expression [tex]\(17x^3 + (3x + 8x^3)\)[/tex], let's break it down:
1. Identify Like Terms:
- The terms involving [tex]\(x^3\)[/tex] are [tex]\(17x^3\)[/tex] and [tex]\(8x^3\)[/tex].
- The term [tex]\(3x\)[/tex] does not have a like term in the expression.
2. Combine Like Terms:
- Add the coefficients of the [tex]\(x^3\)[/tex] terms: [tex]\(17 + 8 = 25\)[/tex].
- So, the combined [tex]\(x^3\)[/tex] term is [tex]\(25x^3\)[/tex].
3. Form the Expression:
- The [tex]\(x^3\)[/tex] terms combine to [tex]\(25x^3\)[/tex].
- The [tex]\(3x\)[/tex] term remains as it is.
The simplified expression is [tex]\(25x^3 + 3x\)[/tex].
So, the correct answer is option C: [tex]\(25x^3 + 3x\)[/tex].
1. Identify Like Terms:
- The terms involving [tex]\(x^3\)[/tex] are [tex]\(17x^3\)[/tex] and [tex]\(8x^3\)[/tex].
- The term [tex]\(3x\)[/tex] does not have a like term in the expression.
2. Combine Like Terms:
- Add the coefficients of the [tex]\(x^3\)[/tex] terms: [tex]\(17 + 8 = 25\)[/tex].
- So, the combined [tex]\(x^3\)[/tex] term is [tex]\(25x^3\)[/tex].
3. Form the Expression:
- The [tex]\(x^3\)[/tex] terms combine to [tex]\(25x^3\)[/tex].
- The [tex]\(3x\)[/tex] term remains as it is.
The simplified expression is [tex]\(25x^3 + 3x\)[/tex].
So, the correct answer is option C: [tex]\(25x^3 + 3x\)[/tex].