High School

Find the slopes of the lines [tex]l_1[/tex] and [tex]l_2[/tex] defined by the given points. Then determine whether [tex]l_1[/tex] and [tex]l_2[/tex] are parallel, perpendicular, or neither.

For [tex]l_1[/tex]: Points [tex](11, 0)[/tex] and [tex](7, -1)[/tex]

Part 1 of 3:
The slope of [tex]l_1[/tex] is 0.25.

Part 2 of 3:
The slope of [tex]l_2[/tex] is [tex]\square[/tex].

Note: Complete the calculation for the slope of [tex]l_2[/tex].

Answer :

Let's find the slope for line [tex]\( l_2 \)[/tex] using the given points [tex]\((9, -1)\)[/tex] and [tex]\((8, -5)\)[/tex].

The formula for finding the slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

For [tex]\( l_2 \)[/tex]:

- [tex]\( (x_1, y_1) = (9, -1) \)[/tex]
- [tex]\( (x_2, y_2) = (8, -5) \)[/tex]

Substitute these values into the slope formula:

[tex]\[ m = \frac{-5 - (-1)}{8 - 9} \][/tex]

[tex]\[ m = \frac{-5 + 1}{-1} \][/tex]

[tex]\[ m = \frac{-4}{-1} \][/tex]

[tex]\[ m = 4 \][/tex]

So, the slope of line [tex]\( l_2 \)[/tex] is [tex]\( 4 \)[/tex].

Now, for the analysis:

1. The slope of [tex]\( l_1 \)[/tex] is given as [tex]\( 0.25 \)[/tex].
2. The slope of [tex]\( l_2 \)[/tex] is [tex]\( 4 \)[/tex].

To determine if the lines are parallel, perpendicular, or neither:

- Lines are parallel if their slopes are equal.
- Lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].

Let's check:

- Since [tex]\( 0.25 \)[/tex] is not equal to [tex]\( 4 \)[/tex], the lines are not parallel.
- To determine if they are perpendicular, calculate: [tex]\( 0.25 \times 4 = 1 \)[/tex], which is not [tex]\(-1\)[/tex].

Therefore, [tex]\( l_1 \)[/tex] and [tex]\( l_2 \)[/tex] are neither parallel nor perpendicular.